Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intimal hyperplasia, a pathological form of vascular remodeling, is a hallmark of several cardiovascular diseases, including restenosis following angioplasty. Vascular smooth muscle cell (VSMC) phenotypic transition plays a critical role in the development of vascular intimal hyperplasia. This study investigates the role of the NOD-like receptor pyrin domain 3 (NLRP3) inflammasome and its downstream effector, gasdermin D (GSDMD), in regulating VSMC phenotypic transition and their implications in the development of intimal hyperplasia. In primary cultured VSMCs, platelet-derived growth factor BB (PDGF-BB) stimulated activation of the NLRP3-GSDMD axis, promoting inflammation, proliferation, and migration. Pharmacological inhibition of the inflammasome with the caspase-1 inhibitor YVAD significantly attenuated PDGF-BB-induced GSDMD activation and lactate dehydrogenase release. Furthermore, silencing the gene effectively blocked PDGF-BB-induced VSMC proliferation, migration, and inflammatory responses. In vivo, intimal hyperplasia was modeled by performing carotid artery ligation in hypercholesterolemic mice. In mice, vascular injury led to increased inflammasome and GSDMD activation, enhanced pyroptosis, elevated vascular inflammation, macrophage infiltration, and a shift to a synthetic VSMC phenotype, primarily within the VSMC-rich intimal region. In contrast, these pathological changes were significantly attenuated in mice. These findings provide novel insights into the critical role of the NLRP3-GSDMD axis in VSMC phenotypic transition and vascular injury-induced intimal hyperplasia, suggesting that targeting this pathway may offer a promising therapeutic strategy for cardiovascular diseases characterized by intimal hyperplasia. This study reveals that the NLRP3-GSDMD axis drives PDGF-BB-induced dedifferentiation transition and inflammation of vascular smooth muscle cells (VSMCs), contributing to intimal hyperplasia. These findings identify NLRP3-GSDMD signaling as a novel driver of pathological vascular remodeling and a potential therapeutic target for intimal hyperplasia-associated cardiovascular diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12369509PMC
http://dx.doi.org/10.1152/ajpcell.00226.2025DOI Listing

Publication Analysis

Top Keywords

intimal hyperplasia
28
nlrp3-gsdmd axis
16
phenotypic transition
16
vascular smooth
12
smooth muscle
12
cardiovascular diseases
12
vsmc phenotypic
12
vascular
9
intimal
9
muscle cell
8

Similar Publications

Heparin-loaded silk fibroin microparticles/bacterial nanocellulose (Hep@SFMPs/BNC) conduits for application as small-caliber artificial blood vessels.

Carbohydr Polym

November 2025

State Key Laboratory of Advanced Fiber Materials (Donghua University), Shanghai 201620, China; College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Med

Small-caliber artificial blood vessels are highly demanded and face challenges, including thrombosis and intimal hyperplasia. The excellent properties of bacterial nanocellulose (BNC) make it an excellent material for preparing artificial blood vessels. Heparin (Hep)-loaded silk fibroin microparticles (SFMPs) were synthesized in situ within the conduit wall via liquid pressure injection and phase separation, aiming to improve BNC's anticoagulant properties.

View Article and Find Full Text PDF

SCAP Interacts with Trim27 to Promote Vascular Neointimal Hyperplasia by Regulating the Stability and Ubiquitination of IκBα.

Aging Dis

August 2025

Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University

Pathological vascular remodeling and intimal hyperplasia after vascular injury are representative pathological processes in age-associated vascular diseases. Previous data from our laboratory have indicated that sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) contributes to physiological angiogenesis during embryonic development. However, the role of SCAP in neointima formation is not fully understood.

View Article and Find Full Text PDF

Objective: This study performed untargeted LC-MS metabolomics on venous tissues from maintenance hemodialysis patients undergoing arteriovenous fistula (AVF) reconstruction surgery.

Methods: A total of six stenotic and six non-stenotic AVF tissues were analyzed. Paired samples were collected from stenotic AVF segments and non-stenotic regions (control group).

View Article and Find Full Text PDF

Intimal hyperplasia (IH) compromises the patency of arteriovenous fistula (AVF) vascular access in patients with end-stage kidney disease. Uncontrolled cell proliferation and migration, driven by inflammation, shear stress and surgery, are well-known triggers in IH. Recently, microRNAs (miRNAs) have emerged as regulators of core mechanisms in cardiovascular diseases and as potential markers of IH.

View Article and Find Full Text PDF

Introduction: The principal challenge in maintaining functional vascular access for hemodialysis is managing outflow stenoses, which are primarily caused by intimal hyperplasia. These stenoses are the leading cause of access dysfunction, leading to inadequate dialysis, increased morbidity, and frequent reinterventions. While drug-coated balloons (DCBs) have emerged as a promising solution by delivering antiproliferative agents to reduce restenosis rates, further clinical insights are needed to establish their role in vascular access management.

View Article and Find Full Text PDF