98%
921
2 minutes
20
Background: Pulmonary Nodules (PNs) are a trend considered as the early manifestation of lung cancer. Among them, PNs that remain stable for more than two years or whose pathological results suggest not being lung cancer are considered benign PNs (BPNs), while PNs that conform to the growth pattern of tumors or whose pathological results indicate lung cancer are considered malignant PNs (MPNs). Currently, more than 90% of PNs detected by screening tests are benign, with a false positive rate of up to 96.4%. While a range of predictive models have been developed for the identification of MPNs, there are still some challenges in distinguishing between BPNs and MPNs.
Methods: We included a total of 5197 patients for the case-control study according to the preset exclusion criteria and sample size. Among them, 4735 with BPNs and 2509 with MPNs were randomly divided into training, validation, and test sets according to a 7:1.5:1.5 ratio. Three widely applicable machine learning algorithms (Random Forests, Gradient Boosting Machine, and XGBoost) were used to screen the metrics, and then the corresponding predictive models were constructed using discriminative analysis, and the best performing model was selected as the target model. The model is internally validated with 10-fold cross validation and compared with PKUPH and Block models.
Results: We collated information from chest CT examinations performed from 2018 to 2021 in the physical examination population and found that the detection rate of PNs was 21.57% and showed an overall upward trend. The GMU_D model constructed by discriminative analysis based on machine learning screening features had an excellent discriminative performance (AUC = 0.866, 95% CI: 0.858-0.874), and higher accuracy than the PKUPH model (AUC = 0.559, 95% CI: 0.552-0.567) and the Block model (AUC = 0.823, 95% CI: 0.814-0.833). Moreover, the cross-validation results also exhibit excellent performance (AUC = 0.866, 95% CI: 0.858-0.874).
Conclusion: The detection rate of PNs was 21.57% in the physical examination population undergoing chest CT. Meanwhile, based on real-world studies of PNs, a greater prediction tool was developed and validated that can be used to accurately distinguish between BPNs and MPNs with the excellent predictive performance and differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12275455 | PMC |
http://dx.doi.org/10.1186/s12911-025-03067-8 | DOI Listing |
Front Digit Health
August 2025
Department of Ophthalmology, Stanford University, Palo Alto, CA, United States.
Introduction: Vision language models (VLMs) combine image analysis capabilities with large language models (LLMs). Because of their multimodal capabilities, VLMs offer a clinical advantage over image classification models for the diagnosis of optic disc swelling by allowing a consideration of clinical context. In this study, we compare the performance of non-specialty-trained VLMs with different prompts in the classification of optic disc swelling on fundus photographs.
View Article and Find Full Text PDFInt J Gen Med
September 2025
Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.
Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.
Neurotrauma Rep
August 2025
Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).
View Article and Find Full Text PDFJ Clin Exp Hepatol
August 2025
Dept of Histopathology, PGIMER, Chandigarh, 160012, India.
Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.
View Article and Find Full Text PDFFront Rehabil Sci
August 2025
Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.
Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.