Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transcription factors (TFs) are proteins that bind DNA to control where and when genes are expressed. In plants, dozens of TF families interact with distinct sets of binding sites (TFBSs) that reflect each TF's role in organismal function and species-specific adaptations. However, defining these roles and understanding broader patterns of regulatory evolution remain challenging, as predicted TFBSs may lack a clear impact on transcription, and experimentally derived TF binding maps to date are modest in scale or restricted to model organisms. Here we present a scalable TFBS assay that we leveraged to create an atlas of nearly 3,000 genome-wide binding site maps for 360 TFs in ten species spanning 150 million years of flowering plant evolution. We found that TF orthologues from distant species retain nearly identical binding preferences, while on the same timescales the gain and loss of TFBSs are widespread. Within lineages, however, conserved TFBSs are over-represented and found in regions harbouring signatures of functional regulatory elements. Moreover, genes with conserved TFBSs showed striking enrichment for cell-type-specific expression in 14 single-nucleus RNA atlases, providing a robust marker of each TF's activity and developmental role. Finally, we compare distant lineages, illustrating how ancient regulatory modules were recruited and rewired to enable adaptations underlying the evolutionary success of grasses.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41477-025-02047-0DOI Listing

Publication Analysis

Top Keywords

flowering plant
8
conserved tfbss
8
tfbss
5
recruitment rewiring
4
rewiring deep
4
deep conservation
4
conservation flowering
4
plant gene
4
gene regulation
4
regulation transcription
4

Similar Publications

Fine tuning wheat development for the winter to spring transition.

Plant Commun

September 2025

School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany. Electronic address:

The coordination of floral developmental stages with the environment is important for reproductive success and the optimization of crop yields. The timing of different developmental stages contributes to final yield potential with optimal adaptation enabling development to proceed without being impacted by seasonal weather events, including frosts or end of season drought. Here we characterise the role of FLOWERING LOCUS T 3 (FT3) in hexaploid bread wheat (Triticum aestivum) during the early stages of floral development.

View Article and Find Full Text PDF

Stacking desirable haplotypes across the genome to develop superior genotypes has been implemented in several crop species. A major challenge in Optimal Haplotype Selection is identifying a set of parents that collectively contain all desirable haplotypes, a complex combinatorial problem with countless possibilities. In this study, we evaluated the performance of metaheuristic search algorithms (MSAs)-genetic algorithm (GA), differential evolution (DE), particle swarm optimisation (PSO), and simulated annealing (SA) for optimising parent selection under two genotype building (GB) objectives: Optimal Haplotype Selection (OHS) and Optimal Population Value (OPV).

View Article and Find Full Text PDF

Trimethylation of histone H3 at lys36 (H3K36me3) promotes gene transcription and governs plant development and plant responses to environmental cues. Yet, how H3K36me3 is translated into specific downstream events remains largely uninvestigated. Here, we report that the Arabidopsis PWWP-domain protein HUA2 binds methyl-H3K36 in a PWWP motif-dependent manner.

View Article and Find Full Text PDF

Grain size is a crucial determinant of rice yield, yet the molecular mechanisms controlling this trait remain only partially understood. Here, we identified the JMJ720 locus as a key regulator of grain size through map-based cloning. The jmj720 mutant was found to exhibit significantly larger grains when compared to the wild type (WT).

View Article and Find Full Text PDF

An oomycete effector targets host calmodulin to suppress plant immunity.

Plant J

September 2025

National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China.

Tropical and subtropical fruit trees face serious threats of oomycete-caused plant diseases. However, the molecular mechanism by which oomycete pathogens suppress the immunity of these fruit trees remains largely unclear. Effectors play a crucial role in the pathogenesis of plant pathogenic oomycetes.

View Article and Find Full Text PDF