98%
921
2 minutes
20
Due to the complexspatial gradients in composition and structure at the native tendon-to-bone attachment, it remains a clinical challenge to repair rotator cuff tears. Herein, we describe a biomimetic scaffold with dual gradients in osteogenic and tendon enthesis effectors to regulate the graded differentiation of stem cells for tendon-to-bone repair. Funnel-shaped microchannels prompted stem cells to rapidly infiltrate into the scaffold to experience the dual gradients in biological effectors along the walls of each microchannel. The graded distributions of two different effectors-hydroxyapatite nanorods and hedgehog agonist-worked synergistically to promote the differentiation of stem cells into osteoblasts, chondrocytes, and tenocytes, reproducing the cell phenotypes present in the natural tendon enthesis. The new scaffold offers a versatile platform to address key requirements for successful repair/regeneration of the tendon-to-bone attachment while also presenting an innovative strategy for the repair of connective tissue interfaces in general.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202503171 | DOI Listing |
Small
September 2025
College of Science, Nanjing Forestry University, Nanjing, 210037, China.
Inspired by the rigid exoskeleton and elastic inner tissues of crustaceans, a bilayer gel integrating high-strength rigidity and soft cushioning with high interfacial adhesion (1060 ± 40 J m ) is developed via a stepwise solid-liquid phase crosslinking strategy. Herein, a prefrozen high-concentration polyvinyl alcohol (PVA) solution forms a solid-state structural framework, while a subsequently cast low-concentration PVA solution generates a flexible layer. Partial thawing of the frozen gel during casting triggers molecular chain interpenetration at the interface, synergistically enhanced by controlled molecular penetration, freeze-thaw cycles, and salt-induced crystallization.
View Article and Find Full Text PDFFood Chem
September 2025
College of Biological and Agricultural Engineering, Jilin University, Changchun 130012, China. Electronic address:
Enhancing hydrophobic bioactives' bioaccessibility remains challenging in functional foods due to instability and insufficient controlled-release ability in conventional protein-polysaccharide carriers. We pioneer a new interaction model by covalently grafting corn stover cellulose nanofibers (CNF) with Zein using N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), creating conjugates with gradient grafting degrees (CNF/Zein 0.5, CNF/Zein 1, and CNF/Zein 2).
View Article and Find Full Text PDFInorg Chem
September 2025
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
Confronting the dual challenges of carbon neutrality and sustainable energy, photocatalytic CO reduction requires precise control over product selectivity. This study demonstrates that surface hydroxyl (-OH) density serves as a molecular switch for reaction pathways in graphene oxide/cobalt tetraphenylporphyrin (GO/CoTPP) hybrids. By tuning the reduction degree of GO supports via gradient hydrazine hydrate treatment (0-85%), we constructed catalysts with controlled -OH concentrations.
View Article and Find Full Text PDFNanoscale Adv
August 2025
Department of Chemistry and Industrial Chemistry & INSTM RU, University of Genoa Via Dodecaneso 31 16146 Genova (GE) Italy
Bismuth ferrite (BiFeO), a perovskite oxide with both ferroelectric and antiferromagnetic properties, has emerged as a promising material for environmental cleanup due to its piezo-photocatalytic activity. The material's ability to degrade organic pollutants, such as azo dyes, under both light irradiation and mechanical stress (ultrasonic waves) offers a dual-action mechanism for efficient wastewater treatment. In this work, we explore the synthesis of BiFeO nanoparticles a simple sol-gel method, followed by characterization of their structural, magnetic, and photocatalytic properties.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, Guangdong, China.
Introduction: During the healing process, the functional gradient attachment of the rotator cuff (RC) tendon-bone interface fails to regenerate, which severely impedes load transfer and stress dissipation, thereby increasing the risk of retears. As a result, the treatment of rotator cuff tears remains a significant clinical challenge.
Methods: In this study, a dual-crosslinked hyaluronic acid/polyethylene glycol (HA/PEG) hydrogel scaffold was synthesized using hyaluronic acid and polyethylene glycol as base materials.