Reducing burst release and enhancing sustained release in SAIB-based implants: The role of polyphenol-modification.

Eur J Med Chem

Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, 110002, China. Electronic address:

Published: November 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sucrose acetate isobutyrate (SAIB)-based in situ forming implants (SADS) are promising for long-acting drug delivery but suffer from undesirable burst release. Here, we propose a molecular-level strategy to mitigate burst release by covalently modifying the antipsychotic drug aripiprazole (ARP) with polyphenols-specifically 4-hydroxybenzoic acid (HBA), protocatechuic acid (PCA), and gallic acid (GA). These moieties form strong hydrogen bonds with SAIB, enhancing drug-matrix interactions. Among them, ARP-GA exhibited the best performance, showing a significant reduction in burst release (8.99 ± 2.10 %) compared to unmodified ARP (22.84 ± 1.03 %) and sustained release over 30 days in vitro. In vivo pharmacokinetics in rats confirmed prolonged circulation with a 2.5-fold increase in AUC (1466.59 ± 139.35 vs. 592.66 ± 157.68 ng/mL•d), extended T (6.40 ± 2.97 vs. 0.29 ± 0.42 days), and lower C/C (2.32 vs. 3.41), indicating improved release control. Rheological and porosity analysis supported the enhanced drug retention mechanism via hydrogen bonding. This approach also proved effective for six additional drugs, suggesting broad applicability. These findings demonstrate that polyphenol modification of APIs offers a carrier-compatible, drug-centric solution for burst release regulation. Overall, this strategy significantly enhances the safety and efficacy of SAIB-based long-acting injectable systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2025.117958DOI Listing

Publication Analysis

Top Keywords

burst release
20
release
8
sustained release
8
reducing burst
4
release enhancing
4
enhancing sustained
4
release saib-based
4
saib-based implants
4
implants role
4
role polyphenol-modification
4

Similar Publications

Chargeable Hydrogels with Dual Modulatory Effects of Bacterial Killing and Immune Remodeling toward Wound Healing.

ACS Appl Mater Interfaces

September 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200070, China.

Wound infections challenge clinical medicine, and developing novel therapies is critically important in overcoming antimicrobial resistance and an off-balanced immune microenvironment. Electrical stimulation as a biocompatible, easy-to-operate, and controllable technique has great potential in eradicating pathogens and modulating the immune system. However, safe and soft platforms that integrate both bactericidal and immunological modulatory effects of electrical stimulation are rarely reported.

View Article and Find Full Text PDF

Balanced biocompatibility in high-viscosity hydroxypropyl methylcellulose-based sponge containing nanoconfined silver citrate nanoparticles.

Int J Biol Macromol

September 2025

Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, PR China. Electronic address:

Balancing antibacterial efficacy, mechanical integrity, and biocompatibility remains a critical challenge in drug release systems for wound dressings. Many antimicrobial agents exhibit inherent cytotoxicity, compromising cell viability and tissue compatibility. To address this, an Absorbable Gelatine Sponge was synthetised based on high-viscosity hydroxypropyl methylcellulose (HPMC K100M) and loaded with silver citrate nanorods (AgCit), which confine silver nanoparticles to enable controlled ion release.

View Article and Find Full Text PDF

Biorelevant simulation of GI variability and its impact on the release behavior of non-disintegrating formulations: A case study using DHSI-IV (NERDT) system as a novel in vitro tool.

Int J Pharm

September 2025

Life Quality (LQ) Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, China. Electronic address:

Gastrointestinal (GI) physiological variability significantly influences dissolution and bioavailability of non-disintegrating solid drug systems. This study employed the dynamic human stomach-intestine (DHSI-IV, branded as NERDT) system to characterize how gastric emptying kinetics and intestinal environmental dynamics affect drug release, using extended-release metformin matrix tablets (Glucophage XR®) and metformin osmotic pump tablets (Nida®) as model formulations. The DHSI-IV (NERDT) system accurately simulated three fasting-state gastric emptying profiles (30-120 min complete emptying) with excellent fit to the modified Elashoff model (R = 0.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) are DNA-protein structures released during a form of programmed neutrophil death known as NETosis. While NETs have been implicated in both tumor inhibition and promotion, their functional role in cancer remains ambiguous. In this study, we compared the NET-forming capacity and functional effects of NETs derived from lung cancer (LC) patients and healthy donors (H).

View Article and Find Full Text PDF

Recent advances in neural regeneration have demonstrated the importance of incorporating proteins into polymeric capsules to provide both topographical and biochemical cues to cells. Coaxial electrospinning has emerged as a versatile technique for embedding delicate bioactive agents within core-shell nanofibers, enabling controlled and sustained drug release. In this study, we employed a design-of-experiment approach to systematically investigate how controllable parameters in coaxial electrospinning influence the diameter and size distribution of aligned poly (ethylene oxide-poly(l-lactide-co-glycolide) nanofibers loaded with nerve growth factor (NGF).

View Article and Find Full Text PDF