98%
921
2 minutes
20
This study proposes a dynamically tunable optical sensor (DFBG-GA) based on the integration of a distributed feedback Bragg grating (DFBG) and a graphene array (GA). Through theoretical analysis and numerical simulations, we demonstrate that the transmission spectrum of DFBG-GA exhibits prominent resonance peaks, the linewidth and wavelength of which can be dynamically tuned by adjusting the graphene chemical potential, the number of Bragg grating periods, and the cavity thickness. Experimental results reveal that the structure achieves a refractive index sensitivity of up to 10,430 nm/RIU, with a strong linear response (R > 0.98). Furthermore, the average figure of merit (Δλ/Δμ) for graphene chemical potential tuning reaches 9.5904 μm/eV, indicating efficient dynamic modulation capabilities. These findings suggest that this architecture has promising potential for applications in biosensing, environmental monitoring, and related fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12221703 | PMC |
http://dx.doi.org/10.1016/j.isci.2025.112848 | DOI Listing |
Light Sci Appl
September 2025
State Key Laboratory of Flexible Electronics, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China.
As the demand for edge platforms in artificial intelligence increases, including mobile devices and security applications, the surge in data influx into edge devices often triggers interference and suboptimal decision-making. There is a pressing need for solutions emphasizing low power consumption and cost-effectiveness. In-sensor computing systems employing memristors face challenges in optimizing energy efficiency and streamlining manufacturing due to the necessity for multiple physical processing components.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States.
Achieving high performance nanoscale photonic functionalities remains extraordinarily challenging when using naturally derived biomaterials. The ability to manipulate ultrathin films of structural proteins─combined with photolithographic control of their polymorphism─unlocks a compelling route toward engineering biopolymer-based photonic crystals with precisely defined photonic bandgaps and reconfigurable structural colors. In this work, we describe a robust, water-based fabrication process for silk/inorganic hybrid one-dimensional (1D) photonic crystals that overcomes many of the conventional difficulties in ensuring reproducibility, uniformity, and reliability at the nanoscale.
View Article and Find Full Text PDFMed Eng Phys
October 2025
Mechanical Engineering Department KVGIT Jaipur, Rajasthan, India.
Triply periodic minimal surfaces have garnered significant interest in the field of biomaterial scaffolds due to their unique structural properties, including a high surface-to-volume (S/V) ratio, tunable permeability, and the potential for enhanced biocompatibility. Bone scaffolds necessitate specific features to effectively support tissue regeneration. This study examines the permeability and active cell proliferation area of advanced Triply Periodic Minimal Surface (TPMS) lattice structures, focusing on a novel lattice design.
View Article and Find Full Text PDFACS Nano
September 2025
Frontiers Science Center for Transformative Molecules, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Dynamic micro/nano-structured surfaces play pivotal roles in biological systems and engineering applications. Despite considerable progress has been made in fabricating precisely ordered architectures, achieving controlled motion in top-down fabricated structures remain a formidable challenge. Here, we introduce an advanced dynamic micron-nano optical platform featuring hierarchical microscale wrinkles integrated with ordered nanoscale arrays.
View Article and Find Full Text PDFLab Chip
September 2025
Institute of Integrated Research, Institute of Science Tokyo, R2-9, 4259 Nagatsuta-cho, Midoriku, Yokohama, Kanagawa 226-8501, Japan.
Tunability in isolating target cells of varying sizes from complex heterogeneous samples is essential for biomedical research and diagnostics. However, conventional deterministic lateral displacement (DLD) systems lack flexibility due to their fixed critical diameters (). Here, we present a thermo-responsive DLD micropillar array that enables tunable cell separation by dynamically modulating through temperature control.
View Article and Find Full Text PDF