Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To investigate the value of combining MRI radiomic and hypoxia-associated gene signature information with clinical data for predicting biochemical recurrence-free survival (BCRFS) after radiotherapy for prostate cancer.

Methods: Patients with biopsy-proven prostate cancer, hypoxia-associated gene signature scores and pre-treatment MRI who received radiotherapy between 01/12/2007 and 31/08/2013 at two cancer centres were included in this retrospective cohort analysis. Prostate segmentation was performed on axial T2-weighted sequences using RayStation (v9.1). Histogram standardisation was applied prior to radiomic feature (RF) extraction. PyRadiomics (v3.0.1) was used to extract RFs for analysis. Four multivariable Cox proportional hazards BCRFS prediction models using clinical information alone and in combination with RFs and/or hypoxia scores were evaluated using concordance index (C-index) [confidence intervals (CI)]. Akaike Information Criterion (AIC) was used to assess model fit.

Results: 178 patients were included. The clinical-only model performance C-index score was 0.69 [0.64-0.7]. The combined clinical-radiomics model (C-index 0.70[0.66-0.73]) and clinical-radiomics-hypoxia model (C-index 0.70[0.65-0.73]) both had higher model performance. The clinical-hypoxia model (C-index 0.68 [0.63-0.7) had lower model performance. Based on AIC, addition of RFs to clinical variables alone improved model performance (p = 0.027), whereas adding hypoxia gene signature scores did not (p = 0.625). The selected features of the combined clinical-radiomics model included age, ISUP grade, tumour stage, and wavelet-derived grey level co-occurrence matrix (GLCM) RFs.

Conclusion: Adding pre-treatment prostate MRI-derived radiomic features to a clinical model improves accuracy of predicting BCRFS after prostate radiotherapy, however addition of hypoxia gene signatures does not improve model accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12367909PMC
http://dx.doi.org/10.1007/s11547-025-02037-4DOI Listing

Publication Analysis

Top Keywords

gene signature
16
model performance
16
hypoxia gene
12
model c-index
12
model
11
combining mri
8
clinical variables
8
biochemical recurrence-free
8
recurrence-free survival
8
radiotherapy prostate
8

Similar Publications

The cytoplasmic N- and C-termini are dispensable for SLAH3 to mediate nitrate-dependent ammonium detoxification in Arabidopsis.

Biochem Biophys Res Commun

August 2025

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China. Electronic address: xiaochb@lz

Ammonium (NH) toxicity significantly limits nitrogen use efficiency (NUE) in agriculture. Nitrate (NO) supplementation mitigates this toxicity, with the anion channel SLAH3 playing a central role by mediating NO efflux to counteract NH-induced rhizosphere acidification. SLAH3, a plasma membrane protein with ten transmembrane domains and cytosolic N- and C-termini, is intrinsically silent.

View Article and Find Full Text PDF

An adverse gestational environment is a risk factor for the development of psychiatric disorders. Although studies have implicated modifications in neuronal DNA and chromatin, how these changes come about and lead to abnormal behaviors is not known. We sought to identify persistent DNA/chromatin and transcriptomic signatures induced by a proinflammatory gestational environment in the ventral dentate gyrus (vDG), a hippocampal region linked to anxiety.

View Article and Find Full Text PDF

Purpose: We reviewed recent advancements in the characterization of intraductal oncocytic papillary neoplasm (IOPN) of the pancreas, with a specific focus on developments in immunohistochemical markers, molecular pathology, and pathogenic mechanisms over the past ten years (2015-2024). Through comprehensive analysis of current literature, we aimed to elucidate the evolving understanding of IOPN's biological behavior and diagnostic features, while identifying potential areas for future research in this distinctive pancreatic neoplasm.

Methods: English-language articles on IOPN were searched from Pubmed from the first report of IOPN of the pancreas in 2015 to 2024.

View Article and Find Full Text PDF

Background: Protein lactylation has been implicated in stress-responsive cellular mechanisms, yet its role in lung transplantation-associated ischemia-reperfusion injury (IRI) remains undefined.

Methods: Transcriptomic profiles from GSE145989 were analyzed through differential expression analysis (limma) and weighted gene co-expression network analysis (WGCNA). Integrating the identified genes with lactylation-related signatures uncovered key lactylation-related genes (LRGs) as potential targets.

View Article and Find Full Text PDF

Genomic and Transcriptomic Analysis of the Whirling Disease-Resistant Gunnison River Rainbow Trout.

Int J Parasitol

September 2025

School of Public Health, University of Alberta, 357 South Academic Building, Edmonton, Alberta, Canada T6G 2G7. Electronic address:

Whirling disease is a debilitating disease of Rainbow Trout caused by Myxobolus cerebralis. The parasite invasion leads to skeletal deformities, neurological impairment, and high mortality. Since its introduction to North America, M.

View Article and Find Full Text PDF