Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The identification of Alzheimer's disease (AD)-associated genomic variants has provided powerful insight into disease etiology. Genome-wide association studies (GWASs) of AD have successfully identified previously unidentified targets but have almost exclusively used additive genetic models. Here, we performed a family-based GWAS of a recessive inheritance model using whole-genome sequencing from families affected by AD. We found an association between AD risk and the variant rs7161410, which is located in an intron of the gene encoding protein kinase C eta (PKCη). In addition, a rare missense mutation, K65R, was in linkage disequilibrium with rs7161410 and was present in homozygous carriers of the rs7161410 risk allele. In vitro analysis revealed that the catalytic rate, lipid dependence, and peptide substrate binding of the purified variant were indistinguishable from those of the wild-type kinase. However, cellular studies revealed that the K65R PKCη variant had reduced cytosolic activity and, instead, enhanced localization and signaling at the Golgi. Moreover, the K65R variant had altered interaction networks in transfected cells, particularly with proteins involved in Golgi processes such as vesicle transport. In human brain tissue, the AD-associated recessive genotype of rs7161410 was associated with increased expression of , particularly in the amygdala. This association of aberrant PKCη signaling with AD and the insight into how its function is altered may lead to previously unidentified therapeutic targets for prevention and treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12303577PMC
http://dx.doi.org/10.1126/scisignal.adv0970DOI Listing

Publication Analysis

Top Keywords

missense mutation
8
alzheimer's disease
8
pkcη
4
pkcη missense
4
mutation enhances
4
enhances golgi-localized
4
golgi-localized signaling
4
signaling associated
4
associated recessively
4
recessively inherited
4

Similar Publications

Parkinson's disease is a prevalent neurodegenerative disease, in which genetic mutations in many genes play an important role in its pathogenesis. Among these, a mutation in the PINK1 gene, a mitochondrial-targeted serine/threonine putative kinase 1 that protects cells from stress-induced mitochondrial dysfunction, is implicated in autosomal recessive Parkinsonism. However, the exact etiology is not well understood.

View Article and Find Full Text PDF

Sinonasal mucosal melanoma (SNMM) is a rare aggressive malignancy of the sinonasal tract. Due to its advanced clinical presentation and frequent late-stage diagnosis, the 5-year survival rate is less than 30%, with an even worse prognosis in patients with distant metastasis (SNMM-M). Therefore, characterizing the molecular landscape of SNMM may provide novel therapeutic targets for SNMM-M.

View Article and Find Full Text PDF

The aim of this study was to investigate three unrelated Simmental calves with atypical white coat color, identify potential genetic causes using a trio-based whole-genome sequencing approach, and assess the prevalence of the identified variants in the breed. Several inherited alleles affecting coat color, ranging from fawn to red spotted and white-headed, have been described in Simmental cattle originating from Switzerland. However, no genetic variant has yet been associated with an almost completely white coat in this breed.

View Article and Find Full Text PDF

A de novo mutation in the transcription factor Nucleus accumbens associated protein 1 (NACC1) gene (c.892C > T p.R298W) causes a rare, severe neurodevelopmental disorder which manifests postnatally.

View Article and Find Full Text PDF

Introduction: Rice is mainly consumed by half of the world's population. The imminent climate change and population growth expected in the next 30 years will outpace the current rice production capacity, posing risks to food and nutrition security in developing nations. One simplified approach to address this challenge is to improve photosynthetic capacity by increasing chlorophyll content in leaves and stems.

View Article and Find Full Text PDF