FMR1 KH0-KH1 domains coordinate mA binding and phase separation in Fragile X syndrome.

Exp Cell Res

State Key Laboratory of Cardiology and Medical Innovation Center, Department of Reproductive Medicine Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China; Sycamore Research Institute of Lif

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fragile X messenger ribonucleoprotein 1 (FMR1) regulates neurodevelopment through mA RNA interactions, yet the domain-specific roles of KH0 and KH1 in RNA binding and disease pathogenesis remain poorly understood. Using mutagenesis and AlphaFold3 structural modeling, we identify KH1 as the primary mA-binding interface, while the KH0 domain (particularly Arg138) modulates liquid-liquid phase separation (LLPS). Pathogenic mutations in KH0 impair RNA binding and promote aberrant LLPS aggregation, whereas mA-modified RNA suppresses LLPS formation at KH0. Structural simulations uncover synergistic interactions between KH0 and KH1 mediated by hydrophobic and electrostatic networks. These domain-specific cooperations establish a mechanistic link between mA dysregulation, pathological phase separation, and Fragile X syndrome pathogenesis. Our findings nominate KH0 as a potential therapeutic target for RNA-driven neurodevelopmental disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2025.114664DOI Listing

Publication Analysis

Top Keywords

phase separation
12
separation fragile
8
fragile syndrome
8
kh0 kh1
8
rna binding
8
kh0
6
fmr1 kh0-kh1
4
kh0-kh1 domains
4
domains coordinate
4
coordinate binding
4

Similar Publications

Hydrogen Bond Disruption-Induced Ion Rearrangement in Acetonitrile-Water-Sodium Sulfate Solutions.

J Phys Chem B

September 2025

Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.

Understanding hydrogen bonding and ion-specific interactions in water, sodium sulfate (NaSO), and acetonitrile (ACN) systems remains challenging due to their complex, dynamic nature. Here, Raman spectroscopy is employed to probe hydrogen bonding networks and ion reorganization in NaSO aqueous solutions with different ACN concentrations. The results indicate that, at low ACN concentrations in the ternary solutions, hydrogen bonding between ACN and water molecules disrupts the original hydration structure of the ions, resulting in the formation of small ion clusters via electrostatic interactions.

View Article and Find Full Text PDF

Construction of chitosan/wurtzite multiple sites on mesoporous halloysite and selective removal of Al(III) from rare earth ions solution: Microcalorimetry investigation.

Int J Biol Macromol

September 2025

School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China; School of Resources and Civil Engineering, GanNan University of Science and Technology, Ganzhou, 341000, China.

Herein, organic/inorganic multiple adsorption sites were constructed on halloysite to intensify the selective adsorption performance of the adsorbent for Al(III) in rare earth solutions. The adsorption heat behavior and thermodynamics of the composite for different ion systems were investigated using microcalorimetry. The results showed that chitosan formed a mesoporous membrane on the acid-treated calcined halloysite (HalH) substrate through a strong electron interaction between the nitrogen atom of the amino group and the oxygen atom of SiO structure on HalH.

View Article and Find Full Text PDF

Phase separation in innate immunity: Teleost IL6Ra's evolutionary leap against viruses.

Int J Biol Macromol

September 2025

National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China; International Resea

Phase separation has been discovered as a new form of regulation in innate immunity. Here, we found that IL6Ra in teleost fish has a unique intrinsic disordered region (IDR) in its amino acid sequence, distinguishing it from the IL6Ra of higher vertebrates. This unique feature endows IL6Ra with the ability to undergo liquid-liquid phase separation, enabling the organism to swiftly initiate an immune response at the early stages of viral infection.

View Article and Find Full Text PDF

Preparation, characterization, and application of a novel chestnut starch-based bigel as a fat substitute in bread.

Int J Biol Macromol

September 2025

College of Food Science, Northeast Agricultural University, Harbin, 150030, China; College of Food Science and Engineering, Jilin University, Changchun, 130062, China; Heilongjiang Province China-Mongolia-Russia Joint R&D Laboratory for Bio-processing and Equipment for Agricultural Products (Interna

This study developed a novel self-assembled bigel by combining a chestnut starch (CS) hydrogel with a γ-oryzanol/β-sitosterol (γ-ORY/β-SIT) oleogel. The influence of the hydrogel to oleogel ratio on the macro and micro structures, mechanical properties and thermal stability of the bigels was examined, and its potential as a healthier solid fat substitute was further explored. The results indicated that as the proportion of hydrogel increased (10 %-50 %), all bigels maintained a consistent semi-solid structure without any phase separation.

View Article and Find Full Text PDF

The safe disposal of heavy metal elements (Pb, Zn, Cu, etc.) in copper smelting slag and efficient treatment of phosphogypsum are urgent. To explore the feasibility of co-processing copper smelting slag and phosphogypsum, this study used PbO and CaSO as raw materials to investigate the sulfidation roasting process and flotation separation of roasted products.

View Article and Find Full Text PDF