Killing two birds with one stone: a simple and integrated platform based on an Fe-MOF for dual-mode detection and photocatalytic elimination of tetracycline.

Analyst

Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The persistence of tetracycline (TC) antibiotic residues in foodstuffs and aquatic systems poses critical threats to human health and the ecological environment, driving an imperative demand for developing multifunctional platforms capable of simultaneous visual monitoring and high-efficiency elimination of these contaminants. Herein, a simple yet novel colorimetric sensor that integrates detection and degradation of TCs has been constructed based on the excellent peroxidase-like activity of the metal-organic frameworks (MOFs) MIL-101(Fe). Colorless 3,3',5,5'-tetramethylbenzidine (TMB) can be effectively oxidized to generate blue oxidized TMB (ox-TMB) by MIL-101(Fe), which exhibits a characteristic peak at 652 nm. The presence of TCs at varying concentrations can specifically inhibit this oxidation reaction, leading to different degrees of decrease in the intensity of the characteristic peak. Based on this concentration-dependent chromogenic behavior, TCs are quantitative identified by the dual-mode detection of UV-Vis absorbance and with the naked eye. The as-fabricated colorimetric sensor displays superior selectivity toward TCs, with its detection capability in complex matrices being successfully validated in environmental water and commercial milk samples. To avoid accessional antibiotic contamination, MIL-101(Fe) can also be served as a scavenger to degrade TCs efficiently under visible light irradiation, achieving up to 92.01% removal efficiency within 3 h. The developed strategy has the advantages of visual recognition, rapid field detection and no requirement of large-scale instruments. Most critically, it cleverly realizes the integration of antibiotic detection and degradation, which provides a low-cost and high-efficiency solution to fundamentally solve the problem of antibiotic contamination.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5an00433kDOI Listing

Publication Analysis

Top Keywords

dual-mode detection
8
colorimetric sensor
8
detection degradation
8
characteristic peak
8
antibiotic contamination
8
detection
6
tcs
5
killing birds
4
birds stone
4
stone simple
4

Similar Publications

Colloidal gold technology in viral diagnostics: Recent innovations, clinical applications, and future perspectives.

Virology

September 2025

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China. Electronic address:

Colloidal gold technology has revolutionized viral diagnostics through its rapid, cost-effective, and user-friendly applications, particularly in point-of-care testing (POCT). This review synthesizes recent advancements, focusing on its role in detecting respiratory viruses, hepatitis viruses, and emerging pathogens. The technology leverages the unique optical and physicochemical properties of gold nanoparticles (AuNPs), including localized surface plasmon resonance (LSPR) and high surface-to-volume ratios, to achieve rapid antigen-antibody recognition with visual readouts within 15 min.

View Article and Find Full Text PDF

Salmonella typhimurium (S. typhimurium) A dual-mode colorimetric/photothermal immunochromatographic strip (ICS) employing hollow polydopamine nanoparticles (h-PDA) is reported for the ultrasensitive detection of Salmonella typhimurium (S. typhimurium).

View Article and Find Full Text PDF

A novel dual-mode sensing system integrating a magnetic core-shell CuFeO/Cu/MnO nanozyme with a stimuli-responsive agarose-deep eutectic solvent hydrogel (DES-Aga) is reported. The nanozyme exhibits exceptional oxidase-like activity, characterized by a low Michaelis constant (K = 0.14 mM) and high catalytic efficiency (V = 1.

View Article and Find Full Text PDF

A nanozyme-mediated cascade reaction system for fluorometric and colorimetric dual-mode detection of sarcosine (SA) was developed. The nanozymes (Zn-Glu@Hemin) were synthesized via a rapid self-assembly within 10 min at room temperature. Importantly, the Zn-Glu@Hemin exhibited strong peroxidase (POD)-mimicking activity, catalyzing the generation of hydroxyl radical (·OH) and superoxide anion (O) from hydrogen peroxide (HO), enhancing the fluorescence reaction of o-phenylenediamine (OPD) and the colorimetric reaction of 3,3',5,5'-tetramethylbenzidine (TMB).

View Article and Find Full Text PDF

Ultrasensitive multifunctional biosensor integrating ECL quenching and DPV enhancement for early classification of thyroid cancer via BRAF V600E and microRNA-221 detection.

Biosens Bioelectron

September 2025

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China. Electronic address:

Papillary thyroid carcinoma (PTC) is the most prevalent form of thyroid cancer with a high incidence among endocrine malignancies. It tends to metastasize early in lymph nodes and differs markedly from other subtypes in biological behavior, clinical management, and prognosis. Therefore, accurately distinguishing PTC from other pathological subtypes is crucial for guiding diagnosis and treatment decisions.

View Article and Find Full Text PDF