Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although single-atom catalysts (SACs) are garnering significant attention due to their exceptional catalytic properties, the synthesis of SACs remains challenging due to their thermodynamic instability. Herein, stabilized Co-based SACs enabled by the ion implantation technique are presented. It is revealed that implantation of Co ions with an accelerating energy of 120 keV and a controlled fluence not only leads to the formation of stabilized Co single atoms without notable aggregation of Co atoms into nanoclusters, but also induces the creation of defects in the NiO support, such as oxygen vacancies. With the effect of atomically dispersed Co metals over the defective NiO support, the Co single atom-supported NiO catalyst exhibits excellent electrocatalytic performance for hydrogen evolution reaction, showing significantly improved activity as well as stability with negligible catalytic degradation during long-term operation. Cu, Ni, and Fe-based SACs are further successfully synthesized, demonstrating that the ion implantation technique is a universal strategy for the synthesis of SACs with a wide variety of combinations of available metal atoms and supporting materials. This finding can pave the way for the development of stabilized SACs toward efficient and practical sustainable energy conversion systems that are based on various catalytic reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12393023PMC
http://dx.doi.org/10.1002/smll.202505383DOI Listing

Publication Analysis

Top Keywords

ion implantation
12
synthesis sacs
8
implantation technique
8
nio support
8
sacs
6
stabilized
4
stabilized single-atom
4
single-atom catalyst
4
catalyst ion
4
implantation
4

Similar Publications

Gravitational and Magnetic Bi-Field Assisted One-Step Quick Fabrication of Implantable Micro Zn-Ion Hybrid Supercapacitor.

Adv Healthc Mater

September 2025

Energy Storage Institute of Lanzhou University of Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, China.

The rapid advancement of implantable medical electronic devices has spurred substantial research into implantable energy storage systems. However, the presence of multiple film resistors in traditional sandwich structures impedes further enhancements in the electrochemical performance of supercapacitors and may result in contact failures between electrodes and separators or catastrophic short-circuit failures during tissue deformation. This study introduces a novel approach for fabricating all-in-one Zn-ion hybrid supercapacitors, which effectively mitigates performance degradation and safety concerns arising from interfacial issues.

View Article and Find Full Text PDF

Infected wounds remain a major clinical challenge due to bacterial invasion, which disrupts the natural healing cascade through excessive reactive oxygen species (ROS) generation, severe vascular damage, and persistent inflammation. Inspired by the catechol-rich adhesive domains of mussel foot proteins, we developed an extracellular matrix (ECM)-mimetic polyethylene glycol (PEG) hydrogel incorporating polydopamine (PDA)-functionalized zinc oxide nanoparticles (ZnONPs) for infected wound therapy. The amino acid-functionalized PEG hydrogel reproduces ECM-like properties to facilitate cell migration and efficient exudate management; however, its lack of intrinsic antimicrobial activity limits therapeutic efficacy.

View Article and Find Full Text PDF

Objective: To investigate the differential expression of microRNA-144-3p in endometrial cells exposed to copper ions in vitro. The specific mechanism by which microRNA-144-3p is involved in Cu-induced damage to the human endometrial epithelial cells (HEECs) was explored.

Methods: HEECs were cultured in copper-containing culture medium to simulate changes in the endometrium after copper intrauterine device (Cu-IUD) implantation.

View Article and Find Full Text PDF

The surface chemistry of Ti40Zr alloys plays a significant role in the formation of the bowl-shaped morphology of polydopamine (PDA). The bowl-shaped PDA morphology formation mechanism on the metal surface and its potential application in biomineralization and long-term stability as an implant material were investigated systematically. A novel nonsacrificial template-assisted bowl-shaped hollow capsule PDA formation was formed on alkali-treated Ti40Zr.

View Article and Find Full Text PDF

Intrinsically Temperature-Insensitive and Highly Sensitive Flexible Wireless Strain Sensor.

ACS Sens

September 2025

Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China.

Accurate strain monitoring in environments with coexisting mechanical deformation and temperature fluctuations─such as solid rocket propellants, battery enclosures, and human ligaments─remains a longstanding challenge for flexible electronics. Conventional strain sensors suffer from significant thermal drift due to the intrinsic temperature dependence of their sensing materials, limiting their reliability in wireless and implantable applications. Here, we report an intrinsically temperature-insensitive, highly sensitive, wireless flexible strain sensor based on near-field communication technology.

View Article and Find Full Text PDF