Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Achieving high activity and stability while minimizing Ir usage poses a significant challenge in the industrialization of proton exchange membrane water electrolysis (PEMWE). Herein we report a sulfur-doping strategy that enables the OER pathway on IrO nanoparticles (IrO/S) to switch from conventional adsorption evolution mechanism (AEM) to lattice oxygen mechanism (LOM) while maintaining Ir─O bond stability, thus achieving a significant enhancement in both intrinsic activity and durability. Advanced spectroscopies and theoretical calculations reveal that the Ir─S coordination motif within the lattice increases the electron density of the Ir center and enhances Ir─O covalency, thus triggering the LOM pathway. Importantly, the lattice distortion and unsaturated Ir─O coordination within the IrO/S generate the oxygen nonbonding state that acts as an electron sacrificial agent to preserve Ir─O bonds upon the LOM-dominated OER process. As a result, PEMWE integrated with such IrO/S electrocatalyst delivers a low cell voltage (1.769 V at 2.0 A cm) and long-term stability (16.6 µV h⁻¹ over 1000 h@1.0 A cm⁻) while dramatically reducing Ir usage from 1.0 to 0.3 mg cm. This work establishes S doping as a viable strategy to trigger LOM and stabilize lattice oxygen redox in Ir-based catalysts, opening a new avenue for low-Ir PEMWEs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202507560DOI Listing

Publication Analysis

Top Keywords

lattice oxygen
12
oxygen mechanism
8
water electrolysis
8
lattice
5
sulfur-doped iro
4
iro enable
4
enable pathway
4
pathway switch
4
switch lattice
4
oxygen
4

Similar Publications

Structural Evidence for the Spin Collapse in High Pressure Solid Oxygen.

Phys Rev Lett

August 2025

European Laboratory for Non Linear Spectroscopy (LENS), Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche (CNR-INO), via Nello Carrara 1, 50019 Sesto Fiorentino, Italy and , via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.

Single crystal x-ray diffraction measurements have been carried out on epsilon oxygen up to 30 GPa to examine the behavior of the constituent (O_{2})_{4} units. An isostructural phase transition is evidenced by lattice parameter and intracluster (O_{8}) distance discontinuities and clear changes in the equation of state at 18.1±0.

View Article and Find Full Text PDF

The lattice oxygen mechanism (LOM) of the oxygen evolution reaction (OER) offers significant kinetic advantages over the adsorbed oxygen mechanism. Anion intercalation induces the LOM in NiOOH by enhancing the covalency of lattice oxygen through the modulation of the metal-oxygen electronic state. The relationships between doping mechanisms, such as the size and valence state of anions and the kinetics of the OER, have been clarified.

View Article and Find Full Text PDF

Lithium metavanadate (LiVO) is a material of growing interest due to its monoclinic 2/ structure, which supports efficient lithium-ion diffusion through one-dimensional channels. This study presents a detailed structural, electrical, and dielectric characterization of LiVO synthesized a solid-state reaction, employing X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and impedance/dielectric spectroscopy across a temperature range of 473-673 K and frequency range of 10 Hz to 1 MHz. XRD and Rietveld refinement confirmed high crystallinity and single-phase purity with lattice parameters = 10.

View Article and Find Full Text PDF

Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.

View Article and Find Full Text PDF

Structure Engineering Enabled O-O Radical Coupling in Spinel Oxides for Enhanced Oxygen Evolution Reaction.

J Am Chem Soc

September 2025

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.

Developing cost-effective spinel oxide catalysts with both high oxygen evolution reaction (OER) activity and stability is crucial for advancing sustainable clean energy conversion. However, practical applications are often hindered by the activity limitations inherent in the adsorbate evolution mechanism (AEM) and the stability limitations associated with the lattice oxygen mechanism (LOM). Herein, we demonstrate structural changes induced by phase transformation in CoMn spinel oxides, which yield more active octahedral sites with shortened intersite distance.

View Article and Find Full Text PDF