Structural Evidence for the Spin Collapse in High Pressure Solid Oxygen.

Phys Rev Lett

European Laboratory for Non Linear Spectroscopy (LENS), Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche (CNR-INO), via Nello Carrara 1, 50019 Sesto Fiorentino, Italy and , via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Single crystal x-ray diffraction measurements have been carried out on epsilon oxygen up to 30 GPa to examine the behavior of the constituent (O_{2})_{4} units. An isostructural phase transition is evidenced by lattice parameter and intracluster (O_{8}) distance discontinuities and clear changes in the equation of state at 18.1±0.5  GPa on compression. This transition corresponds well to the predicted collapse of the molecular magnetic moment from spin-liquid, ε_{1}, to a spinless, ε_{0}, states of the O_{8} structure. The collapse of the molecular magnetic moment has to date only been supported by spectroscopic data and, until now, has not been substantiated structurally.

Download full-text PDF

Source
http://dx.doi.org/10.1103/jvd7-v9h9DOI Listing

Publication Analysis

Top Keywords

collapse molecular
8
molecular magnetic
8
magnetic moment
8
structural evidence
4
evidence spin
4
spin collapse
4
collapse high
4
high pressure
4
pressure solid
4
solid oxygen
4

Similar Publications

Structural Evidence for the Spin Collapse in High Pressure Solid Oxygen.

Phys Rev Lett

August 2025

European Laboratory for Non Linear Spectroscopy (LENS), Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche (CNR-INO), via Nello Carrara 1, 50019 Sesto Fiorentino, Italy and , via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.

Single crystal x-ray diffraction measurements have been carried out on epsilon oxygen up to 30 GPa to examine the behavior of the constituent (O_{2})_{4} units. An isostructural phase transition is evidenced by lattice parameter and intracluster (O_{8}) distance discontinuities and clear changes in the equation of state at 18.1±0.

View Article and Find Full Text PDF

Genetic variants in HSP40 co-chaperones modulate ischemic heart disease risk.

Mol Biol Rep

September 2025

Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, 305041, Russia.

Background: The chaperoning system, which is responsible for protein homeostasis, plays a significant role in cardiovascular diseases. Among molecular chaperones or heat shock proteins (HSPs), the HSP40 family, the main co-chaperone of HSP70, remains largely underexplored, especially in ischemic heart disease (IHD) risk.

Materials And Results: We genotyped 834 IHD patients and 1,328 healthy controls for three SNPs (rs2034598 and rs7189628 DNAJA2 and rs4926222 DNAJB1) using probe-based real-time PCR.

View Article and Find Full Text PDF

Thermotolerant yeasts promoting climate-resilient bioproduction.

FEMS Yeast Res

September 2025

Department of Bioengineering, School of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.

The growing challenges posed by global warming and the demand for sustainable food and feed resources underscore the need for robust microbial platforms in bioprocessing. Thermotolerant yeasts have emerged as promising candidates due to their ability to thrive at elevated temperatures and other industrially relevant stresses. This review examines the industrial potential of thermotolerant yeasts in the context of climate change, emphasizing how their resilience can lead to more energy-efficient and cost-effective bioprocesses.

View Article and Find Full Text PDF

Populations of the acidophilic purple nonsulfur bacterium were identified in two geographically distinct thermal areas in Yellowstone National Park (Wyoming, USA), as confirmed by 16S rRNA gene sequencing and detection of characteristic methoxylated ketocarotenoids. Microcosm-based carbon uptake assays where oxygenic photosynthesis was excluded via addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea yielded a light-driven dissolved inorganic carbon (DIC) assimilation rate (7 ± 2 mg C g C h) comparable to those of highly productive algal mats in acidic hot springs, suggesting that may be performing photoautotrophy at the time of the assay. Rates of acetate assimilation were more than two orders of magnitude lower than DIC assimilation and did not differ between light and dark treatments, indicating photoheterotrophic use of acetate was not occurring, though photoheterotrophic assimilation of other organic compounds cannot be excluded.

View Article and Find Full Text PDF

Inspired by the rigid exoskeleton and elastic inner tissues of crustaceans, a bilayer gel integrating high-strength rigidity and soft cushioning with high interfacial adhesion (1060 ± 40 J m ) is developed via a stepwise solid-liquid phase crosslinking strategy. Herein, a prefrozen high-concentration polyvinyl alcohol (PVA) solution forms a solid-state structural framework, while a subsequently cast low-concentration PVA solution generates a flexible layer. Partial thawing of the frozen gel during casting triggers molecular chain interpenetration at the interface, synergistically enhanced by controlled molecular penetration, freeze-thaw cycles, and salt-induced crystallization.

View Article and Find Full Text PDF