98%
921
2 minutes
20
Compared to global models, regional water isoscapes have increased spatial coverage sampling to better represent the territory patterns and decrease the uncertainty of isoscapes. Here, we present the first tap water isoscapes for Brazil. We collected 575 tap water samples and analyzed for δO and δH using a pyrolysis technique coupled to isotope ratio mass spectrometer for isotope ratio determination. We performed multiple linear regression models between stable isotopes of tap water and values extracted from geographical and climatic variables. Then we fitted semivariograms to perform an ordinary kriging interpolation for spatial prediction of tap water δO and δH values. The observed δH ranged from -63.9 ‰ to 15.4 ‰, and the δO ranged from -9.2 ‰ to 3.7 ‰. The δO and δH tap water isoscapes showed a clear and noticeable spatial pattern as a gradient of increasing stable isotope values from the southwest to the northeast of the country. The tap water isoscapes evidenced the main meteorological systems: the Intertropical Convergence Zone (ITCZ) and the South Atlantic Convergence Zone (SACZ). In conclusion, the isotopes of water in Brazilian tap water are consistent with the primary meteorological systems that deliver precipitation to the landscape.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2025.179952 | DOI Listing |
Clin Exp Dent Res
October 2025
Department of Oral Medicine, Babol University of Medical Sciences, Babol, Mazandaran, Iran.
Objectives: Due to ozonated water's antimicrobial and anti-inflammatory properties, it may be used as a supplementary treatment to scaling and root planing (SRP). The present study aimed to evaluate the clinical effectiveness of using ozonated water instead of tap water during the SRP for people with chronic generalized periodontitis.
Material And Methods: This randomized clinical trial was conducted on 30 patients with generalized periodontitis Stages I and II, randomly allocated to two groups.
J Environ Manage
September 2025
Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chuo-Shan Rd., Taipei, 10673, Taiwan; Water Innovation, Low Carbon and Environmental Sustainability Research Center, National Taiwan University, Taipei, 10617, Taiwan; Science and Technology Research Institute for DE-Car
In this study, a deep-water culture (DWC) hydroponic system integrating carbon dioxide nanobubble (CNB) water and biochar (BC) was explored as a potential substrate for carbon and nutrient management. Lettuce seedlings were cultivated under varying substrates, including tap water (TW) and deionized water (DW) with and without CNB and BC at concentrations of 0.1 or 0.
View Article and Find Full Text PDFOrganophosphate triesters (tri-OPEs) are synthetic phosphate derivatives that are primarily used as flame retardants and plasticizers. Tri-OPEs have become significant aquatic contaminants owing to their large production volumes and wide range of applications. Organophosphate diesters (di-OPEs) are closely related to tri-OPEs.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China. Electronic address:
Antimicrobial resistance is one of the most substantial challenges for global public health. To address the inefficient elimination of intracellular resistance genes (i-ARGs) in antibiotic-resistant bacteria (ARB) by peracetic acid (PAA) oxidation, we developed an integration strategy (NW-EP/EA) of nanowire-confined electroporation (NW-EP) of ARB cells and nanowire-confined electroactivation (NW-EA) of PAA with a sequential oxidation-reduction process. The locally enhanced electric field and electrocatalytic activity over NW tips prompted the formation of electroporation pores on ARB cells and the generation of reactive ⋅OH and RO⋅ radicals by PAA electroactivation.
View Article and Find Full Text PDFAnal Chem
September 2025
Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
Covalent organic frameworks (COFs) exhibit exceptional adsorption capacity but suffer from challenging desorption. In this study, a bromine-functionalized magnetic COF composite (FeO@COF-Br) was synthesized via bromodimethylsulfonium bromide-mediated bromination of imine-linked COF on FeO nanospheres (FeO@COF), where the COF framework was constructed by 1,3,5-tris(4-formylphenyl)benzene and 2,6-diamino-3,5-diethynylpyridine. Compared with pristine FeO@COF, FeO@COF-Br enhanced desorption efficiencies for brominated contaminants by about 30% while maintaining adsorption capacity.
View Article and Find Full Text PDF