98%
921
2 minutes
20
Real-time control and readout are pivotal in superconducting quantum computing, given the imperative for numerous algorithms to perform quantum operations as much as possible within the qubit coherent time. Here, we specifically address the qubit readout, recognized as the most time-consuming operation within our experimental platform, and propose a dynamic adaptive readout method (DARM) to improve the performance of qubit readout. In contrast to a standard readout method (SRM) employing Gaussian Naïve Bayes as a discriminator, the DARM can demonstrate a 22.76% relative improvement on readout fidelity when the readout duration time of both methods is set to be consistent. Furthermore, the DARM can also terminate measurement pulse ahead with a 9.93% relative reduction of measurement pulse length on statistical average. The DARM is implemented on a field-programmable-gate-array-based system, and the electronic processing latency, from the digital processing unit getting the qubit signal to the valid output information, is 52 ns, which is only 4 ns longer than the SRM. Compared with the feedforward neural network readout method, the DARM can work in a pipeline mode with shorter electronic processing latency and lower electronic utilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0239413 | DOI Listing |
Chaos
September 2025
School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
Although many real-world time series are complex, developing methods that can learn from their behavior effectively enough to enable reliable forecasting remains challenging. Recently, several machine-learning approaches have shown promise in addressing this problem. In particular, the echo state network (ESN) architecture, a type of recurrent neural network where neurons are randomly connected and only the read-out layer is trained, has been proposed as suitable for many-step-ahead forecasting tasks.
View Article and Find Full Text PDFACS Nano
September 2025
State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
Optical imaging offers high sensitivity and specificity for noninvasive cancer detection, but conventional techniques suffer from limited probe accumulation, tissue autofluorescence, and poor depth resolution. Afterglow luminescence overcomes autofluorescence by emitting persistent light after excitation, yet its utility in vivo remains hindered by weak tumor enrichment and two-dimensional readouts lacking spatial context. Here, we report luminescent-magnetic nanoparticles (LM-NPs) coencapsulating luminescent trianthracene (TA) molecules and iron oxide cores within the amphiphilic polymer pluronic-F127.
View Article and Find Full Text PDFMed Phys
September 2025
Department of Biomedical Engineering, University of California at Davis, Davis, California, USA.
Background: High-resolution and high-sensitivity small-animal positron emission tomography (PET) scanners are essential non-invasive functional imaging tools in preclinical research. To develop small-animal PET scanners with uniform and high spatial resolution across the field-of-view, PET detectors capable of providing good depth-of-interaction (DOI) information are critical. Dual-ended readout detectors based on lutetium-yttrium oxyorthosilicate (LYSO) arrays with fine pitch represent a promising approach, wherein the choice of inter-crystal reflector significantly impacts the detector performance.
View Article and Find Full Text PDFNPJ Precis Oncol
September 2025
Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
Breast cancer is a highly heterogeneous disease with diverse outcomes, and intra-tumoral heterogeneity plays a significant role in both diagnosis and treatment. Despite its importance, the spatial distribution of intra-tumoral heterogeneity is not fully elucidated. Spatial transcriptomics has emerged as a promising tool to study the molecular mechanisms behind many diseases.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
Agonist-induced interaction of G protein-coupled receptors (GPCRs) with β-arrestins (βarrs) is a critical mechanism that regulates the spatiotemporal pattern of receptor localization and signaling. While the underlying mechanism governing GPCR-βarr interaction is primarily conserved and involves receptor activation and phosphorylation, there are several examples of receptor-specific fine-tuning of βarr-mediated functional outcomes. Considering the key contribution of conformational plasticity of βarrs in driving receptor-specific functional responses, it is important to develop novel sensors capable of reporting distinct βarr conformations in cellular context.
View Article and Find Full Text PDF