Controlled release of CBD from oleosomes modulation of their membrane density.

Food Funct

Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG, Wageningen, The Netherlands.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Oleosomes, native lipid droplets abundant in the plant kingdom, especially in oilseeds, can be extracted in simple steps and have been suggested as lipid carriers or natural substitutes for oil droplets in emulsion-like products for foods, cosmetics and pharmaceuticals. Oleosomes are good candidates as lipid carriers the oral route due to their limited hydrolysis during gastric digestion and slow hydrolysis in the small intestinal phase. The factors that affect oleosomes' ability to resist digestion, particularly the influence of their membrane molecular composition and density, remain unknown. Therefore, oleosome lipid hydrolysis was investigated in a model of small intestinal digestion and compared with oil droplets stabilized by whey proteins and/or phospholipids and with oleosomes having lower membrane density. To showcase that the lipid hydrolysis rate can also affect cargo release, oleosomes were loaded with cannabidiol (CBD) and the CBD release was tracked. Oleosomes exhibited significantly slower lipid digestion than the droplets stabilised by whey proteins and/or phospholipids, which were rapidly digested. The low lipid hydrolysis of oleosomes during intestinal digestion has been attributed to the unique structure of the oleosome membrane proteins, oleosins, which have a long amphipathic helix pinned into the oleosome oil core and out of reach for bile salts and enzymes. Oleosomes with lower membrane density exhibited faster lipid hydrolysis, probably because the digestive enzymes could better adsorb on the interface to access the core lipids. The results elucidate the factors that affect the lipid digestion of oleosomes and demonstrate the dynamic nature of oleosomes for the controlled release of lipophilic cargos, such as CBD, in the intestinal tract.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4fo04171bDOI Listing

Publication Analysis

Top Keywords

lipid hydrolysis
16
membrane density
12
oleosomes
10
lipid
9
controlled release
8
lipid carriers
8
oil droplets
8
small intestinal
8
factors affect
8
intestinal digestion
8

Similar Publications

Impact of lipid modification on the structural and digestive properties of starch in cooked chestnut paste: A comparative study of butter and soybean oil.

Int J Biol Macromol

September 2025

State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Sa

Lipids are commonly added to starchy foods to improve both their sensory attributes and nutritional value. This study investigated the regulatory mechanisms of butter and soybean oil on the starch structure and digestibility in cooked chestnut paste (CCP). X-ray diffraction and complexing indices revealed the formation of V-type crystalline complexes, with soybean oil exhibiting a stronger complexation capacity due to its the flexible properties of unsaturated fatty acids.

View Article and Find Full Text PDF

Lipase production from VC-6 isolated from the volcanic region of Copahue: optimization and functional genomic insights.

Front Microbiol

August 2025

Centro de Biotecnología, Facultad de Ciencias y Tecnología, Universidad Mayor de San Simón, Cochabamba, Bolivia.

Extremophilic microorganisms produce highly stable and industrial-grade enzymes with enhanced performance. Thermostable enzymes, such as lipases that catalyze the hydrolysis and esterification of lipids, are of great industrial interest due to their stability and efficacy under harsh conditions, making them ideal for applications in biotechnology, pharmaceuticals, and cosmetics. Lipase production from various microorganisms is well-studied.

View Article and Find Full Text PDF

Germ-Specific Triacylglycerols as Potential Biomarkers for Authenticating Zhongzi Purple Rice, a Cultivar Recognized for Its Nutritional Value.

J Am Soc Mass Spectrom

September 2025

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Zhongzi purple rice is recognized as a nutritionally superior whole-grain variety, containing higher levels of protein, iron, dietary fiber, and vitamin B6 compared to conventional rice. While the nutritional profile of Zhongzi purple rice is well-established, the spatial distribution and structural specificity of its lipid components, especially germ-specific triacylglycerols (TAGs), remain poorly characterized. This study employs a multimodal mass spectrometric strategy to investigate the lipidomic uniqueness of the Zhongzi purple rice.

View Article and Find Full Text PDF

Qingzhuan tea (QZT) acquires distinctive sensory and functional properties, but the quality evolution during lengthy industrial processing remains unclear. Therefore, this study deciphers the flavor evolution mechanisms by analyzing non-volatile dynamics from fresh leaves to finished tea. A total of 821 metabolites were identified, with 136 differential metabolites mainly comprising lipid degradation and flavonoids polymerization potentially driving the formation of flavor.

View Article and Find Full Text PDF

Proteomic insights into lipid degradation and volatile compound changes during foxtail millet storage.

Food Chem

September 2025

College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Center of Technology Innovation in Food Industry, China Agricultural University, China. Electronic address:

Foxtail millet quality deteriorates during storage, but the mechanisms behind aging-related changes are not fully understood. This study investigated lipid degradation and volatile compound changes in stored foxtail millets, employing proteomics to uncover underlying quality decline mechanisms. After 30 days, fatty acid contents increased, accompanied by a general coarser grain surface texture.

View Article and Find Full Text PDF