98%
921
2 minutes
20
To systematically investigate the molecular and pathological mechanisms of enhancer RNA (eRNA)-mediated transcriptional regulation in glioma recurrence and progression, transcriptomic, regulatome, and genomic data were integrated to analyze eRNA behavior in lower-grade gliomas (stages II/III) and glioblastomas (stage IV). Most eRNAs exhibited dynamic expression during glioma progression, regulated by master transcription factors (TFs) and affected by genomic mutations. The constructed perturbed TF-mediated eRNA-promoter regulatory landscape revealed that rewiring eRNA-promoter networks contributed to glioma malignancy. Drug response-related eRNAs associated with poor prognosis were identified, highlighting their clinical potential. Overall, integrative analysis highlights the critical role of eRNA-mediated regulatory rewiring in glioma progression, providing valuable insights into transcriptional mechanisms and potential therapeutic targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143383 | PMC |
http://dx.doi.org/10.1126/sciadv.adu9487 | DOI Listing |
Adv Healthc Mater
September 2025
School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA.
The prognosis of glioblastoma multiforme (GBM) remains dismal, despite standard treatment regimens. A key challenge in treating GBM is the persistence of glioma stem cells (GSCs) within the perivascular niche (PVN) - a protective tumor microenvironment (TME) that is often associated with inadequate drug penetration. Current preclinical models do not capture complexity of the human TME, particularly the vasculature and niche-specific interactions that drive GBM progression.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.
Glioma therapy faces substantial challenges primarily due to the restrictive nature of the blood-brain barrier (BBB), limiting effective drug penetration and reducing therapeutic efficacy. Recent advancements in novel drug delivery systems (DDS), including exosome-mediated carriers, drug conjugates, and ultrasound-assisted delivery, have demonstrated promising results in overcoming these limitations. Exosomes offer superior biocompatibility, efficient BBB crossing, and natural cellular targeting capabilities; drug conjugates enable highly selective drug delivery through tumor-specific ligands; and ultrasound-assisted systems transiently disrupt the BBB to permit greater drug entry.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
September 2025
Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang 110001, PR China. Electronic address:
The complement system, a cornerstone of innate immunity, plays pivotal roles in both defense and pathology, particularly through its anaphylatoxins, C3a and C5a. These small peptides, generated during complement activation, not only mediate pro-inflammatory responses but also contribute to the progression of various cancers by modulating the tumor microenvironment (TME). Anaphylatoxins influence tumor cell proliferation, epithelial-mesenchymal transition, angiogenesis, immune suppression, and therapy resistance via key signaling pathways such as PI3K/AKT, MEK/ERK, and p38 MAPK.
View Article and Find Full Text PDFJ Cell Mol Med
September 2025
Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China.
Glioblastoma (GBM) exhibits remarkable intra-tumoral heterogeneity, which contributes to therapeutic resistance and poor clinical outcomes. In this study, we employed integrative single-cell RNA sequencing analysis across two complementary public datasets encompassing diverse cellular populations from GBM centre and periphery regions to elucidate potential spatial molecular programmes driving tumour progression. Our analyses revealed substantial transcriptomic divergence between anatomically distinct tumour regions, with NUCB2 emerging as significantly upregulated in centre-residing neural progenitor cell-like (NPC-like) tumour cells.
View Article and Find Full Text PDFClin Cancer Res
September 2025
United States Food and Drug Administration, Silver Spring, Maryland, United States.
On August 6, 2024, the U.S. Food and Drug Administration (FDA) granted traditional approval to vorasidenib (VORANIGO, Servier Pharmaceuticals, LLC) for the treatment of adult and pediatric patients 12 years and older with Grade 2 astrocytoma or oligodendroglioma with a susceptible isocitrate dehydrogenase-1 or 2 (IDH1 or IDH2) mutation following surgery including biopsy, sub-total resection, or gross total resection.
View Article and Find Full Text PDF