Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glioblastoma (GBM) exhibits remarkable intra-tumoral heterogeneity, which contributes to therapeutic resistance and poor clinical outcomes. In this study, we employed integrative single-cell RNA sequencing analysis across two complementary public datasets encompassing diverse cellular populations from GBM centre and periphery regions to elucidate potential spatial molecular programmes driving tumour progression. Our analyses revealed substantial transcriptomic divergence between anatomically distinct tumour regions, with NUCB2 emerging as significantly upregulated in centre-residing neural progenitor cell-like (NPC-like) tumour cells. Functional characterisation demonstrated NUCB2's critical role in regulating GBM stem cell proliferation, with knockdown experiments resulting in significant reduction in tumour cell growth. Intriguingly, NUCB2 expression strongly associated with immunosuppressive molecular signatures and paradoxical immune cell infiltration patterns. Specifically, CD8+ T cells from GBM centre regions exhibited distinctive transcriptional programmes enriched for interferon response, complement activation, and inflammatory pathways, suggesting a state of functional impairment despite enhanced infiltration. Survival analyses confirmed that elevated NUCB2 expression significantly associated with poorer patient survival. Collectively, our findings establish NUCB2 as a multifaceted regulator that coordinates both intrinsic proliferative capacity and extrinsic immunomodulatory functions within the GBM microenvironment. This previously uncharacterised NUCB2-driven axis represents a promising therapeutic target, potentially enabling simultaneous targeting of tumour cell proliferation and immune evasion mechanisms in this aggressive malignancy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12413635PMC
http://dx.doi.org/10.1111/jcmm.70814DOI Listing

Publication Analysis

Top Keywords

gbm centre
8
cell proliferation
8
tumour cell
8
nucb2 expression
8
expression associated
8
tumour
6
nucb2
5
gbm
5
regional transcriptomic
4
transcriptomic architecture
4

Similar Publications

Transcriptional condensates enrich phosphorylated PRMT2 to stimulate H3R8me2a deposition and hypoxic response in glioblastoma.

Sci China Life Sci

September 2025

State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Labora

Histone arginine methylation by protein arginine methyltransferases (PRMTs) is crucial for transcriptional regulation and is implicated in cancers. Despite their therapeutic potential, some PRMTs present challenges as drug targets due to their context-dependent activities. Here, we demonstrate that hypoxia triggers the rapid condensation of PRMT2, which is essential for its histone H3R8 asymmetric dimethylation (H3R8me2a) activity.

View Article and Find Full Text PDF

Carbon ion combined photon radiotherapy induces ferroptosis via NCOA4-mediated ferritinophagy in glioblastoma.

Redox Biol

September 2025

Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, 201321, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321,

Glioblastoma (GBM), the most prevalent and lethal primary malignancy of the central nervous system, remains refractory to conventional photon radiotherapy due to inherent limitations in dose distribution. Although carbon ion radiotherapy offers distinct advantages, including its characteristic Bragg peak deposition and superior relative biological effectiveness, its clinical application is constrained by high costs and increased toxicity. This study explores the radiobiological interactions underlying a mixed carbon ion-photon irradiation regimen, a promising strategy in advanced particle therapy.

View Article and Find Full Text PDF

Introduction: Hypertension, the most common adverse events associated with bevacizumab (BEV) treatment, has been proposed as a potential biomarker of treatment response in glioblastoma (GBM) patients. This study aimed to evaluate whether the timing of hypertension serves as a prognostic value in GBM patients.

Methods: This retrospective study consisting of 56 GBM patients treated with initial BEV between 2013 and 2024.

View Article and Find Full Text PDF

Background: The gut microbiota plays a crucial role in the development of glioma. With the evolution of artificial intelligence technology, applying AI to analyze the vast amount of data from the gut microbiome indicates the potential that artificial intelligence and computational biology hold in transforming medical diagnostics and personalized medicine.

Methods: We conducted metagenomic sequencing on stool samples from 42 patients diagnosed with glioma after operation and 30 non-intracranial tumor patients and developed a Gradient Boosting Machine (GBM) machine learning model to predict the glioma patients based on the gut microbiome data.

View Article and Find Full Text PDF

Extrachromosomal DNA-Driven Oncogene Spatial Heterogeneity and Evolution in Glioblastoma.

Cancer Discov

September 2025

Evolutionary Dynamics Group, Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.

Unlabelled: Oncogenes amplified on extrachromosomal DNA (ecDNA) contribute to treatment resistance and poor survival across cancers. Currently, the spatiotemporal evolution of ecDNA remains poorly understood. In this study, we integrate computational modeling with samples from 94 treatment-naive human glioblastomas (GBM) to investigate the spatiotemporal evolution of ecDNA.

View Article and Find Full Text PDF