On August 6, 2024, the U.S. Food and Drug Administration (FDA) granted traditional approval to vorasidenib (VORANIGO, Servier Pharmaceuticals, LLC) for the treatment of adult and pediatric patients 12 years and older with Grade 2 astrocytoma or oligodendroglioma with a susceptible isocitrate dehydrogenase-1 or 2 (IDH1 or IDH2) mutation following surgery including biopsy, sub-total resection, or gross total resection.
View Article and Find Full Text PDFBackground: Flucloxacillin (FLX)-induced liver injury is immune-mediated and highly associated to HLA-B∗57:01 expression. Host factors leading to drug-induced liver injury are not yet well understood.
Objective: Characterize in vivo immune mechanisms determining the development of CD8 T cells reactive to FLX in animals expressing the risk human leukocyte antigen (HLA) allotype.
Neoantigen formation due to the interaction of drug molecules with human leukocyte antigen (HLA)-peptide complexes can lead to severe hypersensitivity reactions. Flucloxacillin (FLX), a β-lactam antibiotic for narrow-spectrum gram-positive bacterial infections, has been associated with severe immune-mediated drug-induced liver injury caused by an influx of T-lymphocytes targeting liver cells potentially recognizing drug-haptenated peptides in the context of HLA-B*57:01. To identify immunopeptidome changes that could lead to drug-driven immunogenicity, we used mass spectrometry to characterize the proteome and immunopeptidome of B-lymphoblastoid cells solely expressing HLA-B*57:01 as MHC-I molecules.
View Article and Find Full Text PDFAdverse drug reactions (ADRs) are a major obstacle to drug development, and some of these, including hypersensitivity reactions to the HIV reverse transcriptase inhibitor abacavir (ABC), are associated with HLA alleles, particularly HLA-B*57:01. However, not all HLA-B*57:01+ patients develop ADRs, suggesting that in addition to the HLA genetic risk, other factors may influence the outcome of the response to the drug. To study HLA-linked ADRs in vivo, we generated HLA-B*57:01-Tg mice and show that, although ABC activated Tg mouse CD8+ T cells in vitro in a HLA-B*57:01-dependent manner, the drug was tolerated in vivo.
View Article and Find Full Text PDFUp to date, no long-acting reversible contraceptive (LARC) is developed to be injectable through needles smaller than 18 G and can also provide contraception for more than 3 months after single injection. In this study, injectable polymeric in situ forming depot (ISD) systems are developed to have injectability through 21-23 G needles, and capability of sustained release of levonorgestrel (LNG) for at least 7 months in vitro and in vivo after single subcutaneous injection in rats. The systems are polymeric solutions composed of biodegradable poly(lactide-co-glycolide) and poly(lactic acid) polymers dissolved in a mixture of solvents like N-methyl-2-pyrrolidone and benzyl benzoate or triethyl citrate.
View Article and Find Full Text PDFBiodegradable polymer-based injectable in situ forming depot (ISD) systems that solidify in the body to form a solid or semisolid reservoir are becoming increasingly attractive as an injectable dosage form for sustained (months to years) parenteral drug delivery. Evaluation of long-term drug release from the ISD systems during the formulation development is laborious and costly. An accelerated release method that can effectively correlate the months to years of long-term release in a short time such as days or weeks is economically needed.
View Article and Find Full Text PDFResident mesenchymal stem cells (MSCs) promote cancer progression. However, pathways and mechanisms involved in recruiting MSCs into breast tumors remain largely undefined. Here we show that geminin-dependent acetylation releases HMGB1 from the chromatin to the cytoplasm and extracellular space.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
October 2015
Rapid, sensitive, selective and accurate LC/MS/MS method was developed for quantitative determination of levonorgestrel (LNG) in rat plasma and further validated for specificity, linearity, accuracy, precision, sensitivity, matrix effect, recovery efficiency and stability. Liquid-liquid extraction procedure using hexane:ethyl acetate mixture at 80:20 v:v ratio was employed to efficiently extract LNG from rat plasma. Reversed phase Luna column C18(2) (50×2.
View Article and Find Full Text PDFIn response to low oxygen supply, cancer cells elevate production of HIF-1α, a hypoxia-inducible transcription factor that subsequently acts to stimulate blood vessel formation and promote survival. Studies were conducted to determine the role of δ-tocotrienol and a semisynthetic δ-tocotrienol oxazine derivative, compound 44, on +SA mammary tumor cell hypoxic response. Treatment with 150 µM CoCl2 induced a hypoxic response in +SA mammary tumor cells as evidenced by a large increase in HIF-1α levels, and combined treatment with compound 44 attenuated this response.
View Article and Find Full Text PDFBackground: Oxazine derivatives of tocotrienols display enhanced anticancer activity. Studies were conducted to further characterize these effects in vivo.
Materials And Methods: Tetrazolium assay was used to determine the inhibitory effects of oxazine derivatives of γ-tocotrienol and δ-tocotrienol in vitro.
Vitamin E is a generic term that refers to a family of compounds that is further divided into two subgroups called tocopherols and tocotrienols. Although all natural forms of vitamin E display potent antioxidant activity, tocotrienols are significantly more potent than tocopherols in inhibiting tumor cell growth and viability, and anticancer activity of tocotrienols is mediated independently of their antioxidant activity. In addition, the anticancer effects of tocotrienols are observed using treatment doses that have little or no effect on normal cell function or viability.
View Article and Find Full Text PDFEur J Med Chem
January 2013
The vitamin E family members γ- and δ-tocotrienols (2 and 3, respectively) are known natural products with documented anticancer activities. Redox-silent structural modifications, such as esterification, etherification and carbamoylation, of 2 and 3 significantly enhanced their anticancer activities. However, hit-to-lead optimization of tocotrienols and their analogs was yet to be reported at the outset of the project described herein.
View Article and Find Full Text PDF