Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The transcription factor SOX9 plays a critical role in various diseases, including hepatocellular carcinoma (HCC), and has been implicated in resistance to sorafenib treatment. Accurate assessment of SOX9 expression is important for guiding personalized therapy in HCC patients; however, a reliable non-invasive method for evaluating SOX9 status remains lacking. This study aims to develop a deep learning (DL) model capable of preoperatively and non-invasively predicting SOX9 expression from CT images in HCC patients. We retrospectively analyzed a dataset comprising 4011 CT images from 101 HCC patients who underwent surgical resection followed by sorafenib therapy at West China Hospital, Sichuan University. A deep reinforcement learning (DRL) approach was proposed to enhance prediction accuracy by identifying and focusing on image regions highly correlated with SOX9 expression, thereby reducing the impact of background noise. Our DRL-based model achieved an area under the curve (AUC) of 91.00% (95% confidence interval: 88.64-93.15%), outperforming conventional DL methods by over 10%. Furthermore, survival analysis revealed that patients with SOX9-positive tumors had significantly shorter recurrence-free survival (RFS) and overall survival (OS) compared to SOX9-negative patients, highlighting the prognostic value of SOX9 status. This study demonstrates that a DRL-enhanced DL model can accurately and non-invasively predict SOX9 expression in HCC patients using preoperative CT images. These findings support the clinical utility of imaging-based SOX9 assessment in informing treatment strategies and prognostic evaluation for patients with advanced HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110404PMC
http://dx.doi.org/10.3390/diagnostics15101255DOI Listing

Publication Analysis

Top Keywords

sox9 expression
20
hcc patients
16
sox9
9
deep reinforcement
8
reinforcement learning
8
hepatocellular carcinoma
8
sox9 status
8
patients
7
hcc
6
expression
5

Similar Publications

Kartogenin-encapsulated self-healing injectable hydrogel based on hyaluronic acid and chitosan derivative for use as viscosupplementation in knee osteoarthritis.

Int J Biol Macromol

September 2025

Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Bioplastics Production Laboratory for Medical Applications, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai Univ

Early osteoarthritis treatment often relies on viscosupplementation via intra-articular injections, which are limited by inflammation risk and poor cartilage restoration. To address these issues, self-healing hydrogels provide a promising alternative because of their ability to recover structure after mechanical stress. This study reports an injectable self-healing hydrogel composed of N-succinyl chitosan (NSC) and hyaluronic dialdehyde (HAD), combined with kartogenin (KGN), synthesized under mild conditions via Schiff base reactions.

View Article and Find Full Text PDF

Introduction: DMRT1 on the Z chromosome is a conserved male sex-determining gene in birds. In chickens, a representative model species of Neognathae, the function of DMRT1 has been well characterized. In contrast, Palaeognathae species such as the emu possess less differentiated sex chromosomes and thus provide a valuable system for investigating avian sex determination, yet molecular studies remain limited.

View Article and Find Full Text PDF

Background: In surviving renal proximal tubule cells (RPTCs) following acute kidney injury (AKI), the induction of SOX9 expression plays a crucial role in promoting kidney repair. However, persistent upregulation of SOX9 in RPTCs contributes to the development of chronic kidney disease (CKD). The molecular mechanisms underlying SOX9 induction in response to kidney injury are not completely understood.

View Article and Find Full Text PDF

The kidney maintains fluid homeostasis by reabsorbing essential compounds and excreting waste. Proximal tubule cells, crucial for reabsorbing sugars, ions, and amino acids, are highly susceptible to injury, often leading to pathologies necessitating dialysis or transplants. Human pluripotent stem cell-derived kidney organoids offer a platform to model renal development, function, and disease, but proximal nephron differentiation and maturation in these structures is incomplete.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is a prevalent joint disorder, characterized by cartilage degradation driven by matrix metalloproteinases (MMPs) and dysregulated extracellular matrix (ECM) turnover. Biological macromolecules, such as ECM-derived scaffolds, offer therapeutic potential by mimicking native cartilage composition, yet their rapid enzymatic breakdown hampers regenerative potential. We hypothesized that embedding an MMP inhibitor within ECM could mitigate MMP-driven breakdown, thereby halting OA progression, while stabilizing ECM structure and boosting chondrogenesis.

View Article and Find Full Text PDF