98%
921
2 minutes
20
The transcription factor SOX9 plays a critical role in various diseases, including hepatocellular carcinoma (HCC), and has been implicated in resistance to sorafenib treatment. Accurate assessment of SOX9 expression is important for guiding personalized therapy in HCC patients; however, a reliable non-invasive method for evaluating SOX9 status remains lacking. This study aims to develop a deep learning (DL) model capable of preoperatively and non-invasively predicting SOX9 expression from CT images in HCC patients. We retrospectively analyzed a dataset comprising 4011 CT images from 101 HCC patients who underwent surgical resection followed by sorafenib therapy at West China Hospital, Sichuan University. A deep reinforcement learning (DRL) approach was proposed to enhance prediction accuracy by identifying and focusing on image regions highly correlated with SOX9 expression, thereby reducing the impact of background noise. Our DRL-based model achieved an area under the curve (AUC) of 91.00% (95% confidence interval: 88.64-93.15%), outperforming conventional DL methods by over 10%. Furthermore, survival analysis revealed that patients with SOX9-positive tumors had significantly shorter recurrence-free survival (RFS) and overall survival (OS) compared to SOX9-negative patients, highlighting the prognostic value of SOX9 status. This study demonstrates that a DRL-enhanced DL model can accurately and non-invasively predict SOX9 expression in HCC patients using preoperative CT images. These findings support the clinical utility of imaging-based SOX9 assessment in informing treatment strategies and prognostic evaluation for patients with advanced HCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110404 | PMC |
http://dx.doi.org/10.3390/diagnostics15101255 | DOI Listing |
Int J Biol Macromol
September 2025
Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Bioplastics Production Laboratory for Medical Applications, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai Univ
Early osteoarthritis treatment often relies on viscosupplementation via intra-articular injections, which are limited by inflammation risk and poor cartilage restoration. To address these issues, self-healing hydrogels provide a promising alternative because of their ability to recover structure after mechanical stress. This study reports an injectable self-healing hydrogel composed of N-succinyl chitosan (NSC) and hyaluronic dialdehyde (HAD), combined with kartogenin (KGN), synthesized under mild conditions via Schiff base reactions.
View Article and Find Full Text PDFCytogenet Genome Res
September 2025
Introduction: DMRT1 on the Z chromosome is a conserved male sex-determining gene in birds. In chickens, a representative model species of Neognathae, the function of DMRT1 has been well characterized. In contrast, Palaeognathae species such as the emu possess less differentiated sex chromosomes and thus provide a valuable system for investigating avian sex determination, yet molecular studies remain limited.
View Article and Find Full Text PDFJ Am Soc Nephrol
September 2025
Department of Veterans Affairs, Nashville, Tennessee.
Background: In surviving renal proximal tubule cells (RPTCs) following acute kidney injury (AKI), the induction of SOX9 expression plays a crucial role in promoting kidney repair. However, persistent upregulation of SOX9 in RPTCs contributes to the development of chronic kidney disease (CKD). The molecular mechanisms underlying SOX9 induction in response to kidney injury are not completely understood.
View Article and Find Full Text PDFNat Commun
August 2025
Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at University of Southern California, Los Angeles, CA, USA.
The kidney maintains fluid homeostasis by reabsorbing essential compounds and excreting waste. Proximal tubule cells, crucial for reabsorbing sugars, ions, and amino acids, are highly susceptible to injury, often leading to pathologies necessitating dialysis or transplants. Human pluripotent stem cell-derived kidney organoids offer a platform to model renal development, function, and disease, but proximal nephron differentiation and maturation in these structures is incomplete.
View Article and Find Full Text PDFInt J Biol Macromol
August 2025
Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic address:
Background: Osteoarthritis (OA) is a prevalent joint disorder, characterized by cartilage degradation driven by matrix metalloproteinases (MMPs) and dysregulated extracellular matrix (ECM) turnover. Biological macromolecules, such as ECM-derived scaffolds, offer therapeutic potential by mimicking native cartilage composition, yet their rapid enzymatic breakdown hampers regenerative potential. We hypothesized that embedding an MMP inhibitor within ECM could mitigate MMP-driven breakdown, thereby halting OA progression, while stabilizing ECM structure and boosting chondrogenesis.
View Article and Find Full Text PDF