Background: Osteoarthritis (OA) is a prevalent joint disorder, characterized by cartilage degradation driven by matrix metalloproteinases (MMPs) and dysregulated extracellular matrix (ECM) turnover. Biological macromolecules, such as ECM-derived scaffolds, offer therapeutic potential by mimicking native cartilage composition, yet their rapid enzymatic breakdown hampers regenerative potential. We hypothesized that embedding an MMP inhibitor within ECM could mitigate MMP-driven breakdown, thereby halting OA progression, while stabilizing ECM structure and boosting chondrogenesis.
View Article and Find Full Text PDFAutophagy is a cellular degradation process that plays a crucial role in maintaining metabolic homeostasis under conditions of stress or nutrient deprivation. This process involves sequestering, breaking down, and recycling intracellular components such as proteins, organelles, and cytoplasmic materials. Autophagy also serves as a mechanism for eliminating pathogens and engulfing apoptotic cells.
View Article and Find Full Text PDFColorectal cancers are derived from intestinal polyps. Normally, alterations in cell adhesion genes expression cause deviation from the normal cell cycle, leading to cancer development, progression, and invasion. The present study aimed to investigate the elusive expression pattern of CDC42, TAGLN, and GSN genes in patients with high and low-risk polyp samples, and also colorectal cancer patients and their adjacent normal tissues.
View Article and Find Full Text PDFIntroduction: Mesenchymal stromal cell (MSC)-based therapy has generated great hope for the treatment of various diseases such as myocardial infarction and stroke. Unfortunately, MSC-based therapy faces major hurdles in its translation to clinical practice. To address these issues, preconditioning and genetic modification strategies have been developed.
View Article and Find Full Text PDFResearchers have examined different bio-inspired materials in tissue engineering and regenerative medicine to fabricate scaffolds to address tendon regeneration requirements. We developed fibers based on alginate (Alg) and hydroxyethyl cellulose (HEC) by wet-spinning technique to mimic the fibrous sheath of ECM. Various proportions (25:75, 50:50, 75:25) of 1 % Alg and 4 % HEC were blended to this aim.
View Article and Find Full Text PDFDecellularization of tissues and organs has recently become a promising approach in tissue engineering and regenerative medicine to circumvent the challenges of organ donation and complications of transplantations. However, one main obstacle to reaching this goal is acellular vasculature angiogenesis and endothelialization. Achieving an intact and functional vascular structure as a vital pathway for supplying oxygen and nutrients remains the decisive challenge in the decellularization/re-endothelialization procedure.
View Article and Find Full Text PDFTissue-engineered decellularized extracellular matrix (ECM) scaffolds hold great potential to address the donor shortage as well as immunologic rejection attributed to cells in conventional tissue/organ transplantation. Decellularization, as the key process in manufacturing ECM scaffolds, removes immunogen cell materials and significantly alleviates the immunogenicity and biocompatibility of derived scaffolds. However, the application of these bioscaffolds still confronts major immunologic challenges.
View Article and Find Full Text PDFBone-related diseases are major contributors to morbidity and mortality in elderly people and the current treatments result in insufficient healing and several complications. One of the promising areas of research for healing bone fractures and skeletal defects is regenerative medicine using stem cells. Differentiating stem cells using agents that shift cell development towards the preferred lineage requires activation of certain intracellular signaling pathways, many of which are known to induce osteogenesis during embryological stages.
View Article and Find Full Text PDF