Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This article methodically reveals how, in woody plants (poplar), the interaction between N and P coordinates root structure and nutrient absorption through a complex hormone signaling network. This study bridges a significant gap in our knowledge of nutrient interaction networks. The results demonstrate that NO significantly enhances the gene expression and enzymatic activity of organic acid synthases (MDH, PEPC) and APs. Furthermore, it synergizes with IAA/ABA signals to refine root structure, enhancing the surface area for P absorption. In low Pi availability environments, NO further promotes P recycling by simultaneously boosting the levels of Pi transport proteins (notably, the PHO family), facilitating myo-inositol phosphate metabolism (via IMP3/ITPK1-mediated PP-InsPs degradation), and augmenting IAA/SA signals. Pi induces the activity of N assimilation enzymes (GS/GOGAT/GDH), facilitating nitrogen metabolism. However, in the absence of N, it leads to a metabolic imbalance characterized by high enzymatic activity but low efficiency. Alternatively, adequate N availability allows Pi to improve root robustness and N assimilation efficiency, mediated by IAA/GA accumulation and ABA signaling (e.g., /). We propose the existence of an intricate network in poplar, orchestrated by transcriptional cascades, metabolic regulation, and hormonal synergism. Key modules such as -, , , and are likely central to this network's function. These findings offer a foundational framework for the development of molecular breeding and precise fertilization strategies, enhancing the efficient use of N and P in forestry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108901PMC
http://dx.doi.org/10.3390/biology14050490DOI Listing

Publication Analysis

Top Keywords

nutrient absorption
8
woody plants
8
root structure
8
enzymatic activity
8
impact nitrogen
4
nitrogen phosphorus
4
phosphorus interaction
4
interaction growth
4
growth nutrient
4
absorption signal
4

Similar Publications

Nitrogen leaching is a major pathway of nitrogen fertilizer loss. Although arbuscular mycorrhizal (AM) fungi are known to reduce nitrogen leaching by improving plant nitrogen uptake, the soil-based mechanisms remain unclear. A pot experiment was conducted using a randomized complete block design, with four nitrogen levels (0, 3.

View Article and Find Full Text PDF

Unlabelled: Lactobacilli, recognized as beneficial bacteria within the human body, are celebrated for their multifaceted probiotic functions, including the regulation of intestinal flora, enhancement of body immunity, and promotion of nutrient absorption. This study comprehensively analyzed the genotypic and phenotypic characteristics of () strains isolated from the intestines of healthy chicks and assessed their potential as probiotics. The assembled genome consists of 29,521,986 bp, and a total of 1,771 coding sequences (CDSs) were predicted.

View Article and Find Full Text PDF

Slt2 positively regulates Myb-mediated cellulose utilization in .

mBio

September 2025

Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China.

Unlabelled: Fungal degradation of cellulose facilitates the sustainable harnessing of biosphere energy and carbon cycling. is one of the basidiomycetes with the largest number of hydrolytic enzymes in its genome. The mycelium of degrades cellulose through the production of substantial amounts of cellulase, enabling the absorption of carbon sources and nutrients essential for fruiting body development.

View Article and Find Full Text PDF

Aquaculture and animal producers are increasingly exploring natural additives such as for their health-promoting and sustainability-enhancing roles. Known primarily as a sweetener, also contains bioactive compounds, such as stevioside and rebaudioside A (Reb A), which exhibit antibacterial, antioxidant, immunomodulatory, and metabolic benefits. Recent studies suggest that these compounds may also exert prebiotic-like activities by modulating the gut microbiota, promoting the growth of beneficial bacterial populations (e.

View Article and Find Full Text PDF

This review discusses the research progress of regulating tree dwarfing in fruit tree rootstocks, including its definition, manifestation, mechanism and application of different rootstocks. Studies indicate that dwarfing rootstocks reduce vegetative growth while promoting reproductive growth. Compared with vigorous rootstocks, the contents of indole-3-acetic acid, cytokinin, and gibberellin in leaves is lower, while the content of abscisic acid is higher.

View Article and Find Full Text PDF