98%
921
2 minutes
20
As conductive materials, ionogels have attracted significant attention for their potential applications in flexible wearable electronics. However, preparing an ionogel with mechanical properties akin to human skin while also achieving transparency, adhesion, and low hysteresis through simple processes remains challenging. Here, we introduce a multifunctional ionogel synthesized via a one-step photopolymerization method. By leveraging the good compatibility between the ionic liquid and the polymer network, as well as the hydrogen bonding and chemical crosslinking within the gel network, we achieved an ionogel with high transparency (>98%), stretchability (fracture strain of 19), low hysteresis (<5.83%), strong adhesion, robust mechanical stability, excellent electrical properties, a wide operating temperature range, and a tunable modulus (1-103 kPa) that matches human skin. When used as a conductor in soft actuators, the ionogel enabled a large area strain of 36% and a fast electromechanical conversion time of less than 1 s. The actuator demonstrated good actuation performance with voltage and frequency dependence, electrochemical stability, and outstanding durability over millions of cycles. This study provides a simple and effective method to produce multifunctional ionogels with tailored mechanical properties that match those of human skin, paving the way for their application in flexible wearable electronics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12111308 | PMC |
http://dx.doi.org/10.3390/gels11050369 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Research Group of Optical Properties of Materials (GPOM), Centro de Investigaciones en Óptica, León, Guanajuato 37150, Mexico.
This study presents a systematic analysis of the impact of polymer hole transport layers (HTLs) in inverted MAPbI perovskite solar cells (PSCs). Devices were fully fabricated under regular atmospheric conditions (≈40% humidity) and low temperature (100 °C) by using Field's Metal (FM) as an alternative top electrode. The widely known π-conjugated polymers P3HT, PTB7-Th, PBDB-T, and MEH-PPV were used as HTLs, and all of them show suitable energy alignment to MAPbI, offering good moisture stability, solution processability, low cost, and attractiveness for large area and flexible PSCs.
View Article and Find Full Text PDFChemSusChem
September 2025
i-Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
Solid-state lithium metal batteries (SSLMBs) are promising for realizing higher energy density. However, the poor interfacial Li transport kinetics and Li dendrite growth inhibit SSLMBs, leading to sluggish interfacial ion diffusion and depressive lifespan, which is attributed to high barriers blocked by anions or interface space in solid-state electrolytes. Herein, a flexible solid-state polymer skeleton employed with ionic liquid and metal-organic frameworks (PIM) electrolyte is proposed to strengthen interfacial Li ion exchange by improving the Li sieving effect and interfacial wettability.
View Article and Find Full Text PDFSci Rep
September 2025
School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
To improve the image quality of active-matrix organic light-emitting diode (AMOLED) displays at low luminance levels, a novel power structure is proposed. Its effectiveness was validated by fabricating a 13-inch AMOLED panel with a tandem OLED and evaluating its optical performance. Compared to the conventional structure, the proposed structure reduced panel luminance deviation by 12% and color deviation by 41%, while also achieving a 41% reduction in hysteresis-induced color shift.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh-517619, India.
Chemical design of metal halide hybrids (MHHs) with suppressed melting point () allows access to glassy phases from their liquid-melts. Thermal phase change (crystal-melt-glass) properties of glassy MHHs (with glass transition temperature > room temperature) have been exploited for device applications. However, room temperature stable supercooled liquid (SCL) MHHs (with < room temperature), originating from glass-SCL phase change, remain inaccessible.
View Article and Find Full Text PDFSmall
September 2025
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
Reconciliation of the elasticity, reinforcement, and recyclability in elastomer nanocomposites (ENCs) remains challenging, primarily due to the energy losses of the friction at polymer-nanoparticle interfaces and the permanent covalent cross-linking. Here, a self-adaptive soft interface strategy is introduced, using modulus-tuned polymer nanoparticles (PNPs) as reinforcement agents and interfacial chemical cross-linking sites within a vitrimer elastomer matrix. Such a framework promotes synergistic deformation of the PNPs with the matrix chains during mechanical deformation to minimize energy dissipation.
View Article and Find Full Text PDF