Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Reconciliation of the elasticity, reinforcement, and recyclability in elastomer nanocomposites (ENCs) remains challenging, primarily due to the energy losses of the friction at polymer-nanoparticle interfaces and the permanent covalent cross-linking. Here, a self-adaptive soft interface strategy is introduced, using modulus-tuned polymer nanoparticles (PNPs) as reinforcement agents and interfacial chemical cross-linking sites within a vitrimer elastomer matrix. Such a framework promotes synergistic deformation of the PNPs with the matrix chains during mechanical deformation to minimize energy dissipation. Compared to traditional inorganic filler systems, these deformable PNPs exhibit exceptional compatibility and uniform dispersion, endowing the PNPs-filled ENCs with high mechanical strength, elongation at break, toughness, and low hysteresis loss. Moreover, the dynamic covalent bonds both in the matrix and interface impart excellent reprocessability and recyclability at elevated temperature, such as maintaining 88% of the mechanical performances after ten recycling cycles. This work puts forward a high additional value approach to produce PNPs, which are compounded with elastomer matrix with covalent adaptable networks to successfully balance the long-standing irreconcilable elasticity, reinforcement, and recycling, thus opening a new avenue for the development of next generation high performance and eco-friendly ENCs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202508062DOI Listing

Publication Analysis

Top Keywords

polymer nanoparticles
8
self-adaptive soft
8
soft interface
8
vitrimer elastomer
8
elastomer nanocomposites
8
elasticity reinforcement
8
elastomer matrix
8
nanoparticles enable
4
enable self-adaptive
4
interface vitrimer
4

Similar Publications

Significantly enhanced breakdown strength and energy density performances of methyl methacrylate--glycidyl methacrylate nanocomposites filled with BNNs@PDA-Ag hybrid structures.

Nanoscale

September 2025

School of Chemical Engineering, Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.

Electronic capacitor films based on polymer matrices and inorganic nanofillers capable of storing more energy play a crucial role in advanced modern electrical industries and devices. Herein, a series of nanocomposite films composed of "core-shell-dot" BNNs-PDA@Ag hybrid structures with multiple breakdown strength enhancement mechanisms as fillers and methyl methacrylate--glycidyl methacrylate (MG) copolymers as matrices were successfully synthesized. The introduced 2D and wide-bandgap BNNs not only enhanced the breakdown strength by taking advantage of their excellent physical properties, but also further improved their energy storage properties both at ambient and elevated temperatures through the formation of deeper traps at the organic-inorganic interface.

View Article and Find Full Text PDF

Lignin-Based Functional Materials.

Biomacromolecules

September 2025

Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, Stockholm 10044, Sweden.

Lignin, traditionally considered a low-value byproduct of the pulp and paper industry, has gained significant attention in recent years as a sustainable precursor for the development of functional materials. This paradigm shift is driven by recent studies exploring the structure-property-performance relationships of lignin-based functional materials, which have provided valuable insights for selective chemical functionalization or pretreatment of lignin. Furthermore, the use of complementary analytical techniques has helped to shed light into lignin's complex and heterogeneous structure, opening new avenues for chemical modification.

View Article and Find Full Text PDF

Objectives: Bortezomib (BTZ) functions as an androgen receptor signalling inhibitor, is used for the treatment of prostate cancer, and has been sanctioned by the United States Food and Drug Administration. The medicinal applications of BTZ are impeded by low solubility, first-pass metabolism, and restricted bioavailability. This study aimed to develop and enhance polylactic acid-co-glycolic acid (PLGA) nanobubbles (NBs) as a sustained-release mechanism for BTZ, thereby augmenting stability and bioavailability.

View Article and Find Full Text PDF

As supramolecular assemblies, polypseudorotaxanes (PPR) exhibit inherent advantages in modular adaptability and structural programmability, with the potential to build tuneable platforms integrating various functionalities. Here we report the "one-pot" preparation of a self-assembled thiol-rich PPR (SPPR), where thiolated-α-cyclodextrins (SHαCD) spontaneously thread onto polymers, and are then crosslinked into a three-dimensional network by the thermally-triggered oxidation of thiols into disulfide bonds. The dynamic thiol groups along the SPPR provide remarkable modularity for the functionalization of thiophilic metal nanoparticles (NPs), exemplified by two application vectors.

View Article and Find Full Text PDF

Polymer-based gene-drug co-delivery system effectively inhibits pathologic retinal neovascularization through dual anti-inflammatory and anti-neovascular actions.

Biomaterials

September 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.

Retinal neovascularization is one of the most prevalent fundus neovascular diseases, affecting vision and potentially leading to severe complications, such as retinal detachment or irreversible blindness. Current treatments primarily involve intravitreal injections (IVT) of anti-vascular endothelial growth factor (anti-VEGF) agents. However, such treatment often requires repeated injections, develop incomplete responses, and are associated with adverse effects.

View Article and Find Full Text PDF