Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Asthma is a chronic inflammatory airway disease that remains inadequately controlled by existing conventional treatments. A traditional Chinese medicine (TCM) formula of Yangke powder (yǎng ké sǎn-YKS) has demonstrated potential in alleviating asthma symptoms and reducing its acute exacerbation. Despite clinical evidence supporting its benefit, there is still insufficient understanding of the active compounds in YKS and their underlying mechanisms, which limits its broader clinical application.

Objective: This study aims to identify the key active ingredients in YKS and explore their mechanisms, particularly through the PI3K/AKT/NF-κB pathways, to provide a scientific basis for its application in asthma treatment.

Methods: We employed UPLC-Q-Exactive Orbitrap-MS to analyze YKS constituents, identified key ingredients, and explored asthma treatment mechanisms through bioinformatics, network pharmacology, Mendelian randomization, and molecular docking. The asthma model was evaluated using ovalbumin (OVA) and pulmonary function tests, while pathological examination was conducted using hematoxylin and eosin (HE), periodic acid-Schiff (PAS), and Masson trichrome stains. Concentrations of IgE, IL-4, and IL-5 were measured by ELISA, and protein and mRNA expressions were confirmed via qPCR, immunohistochemistry, and Western blot analysis.

Results: A total of 174 compounds were identified in YKS by UPLC-MS, with 49 detected in the bloodstream, indicating their role as active ingredients. Bioinformatics analysis revealed 353 asthma-related targets and 972 potential targets for YKS. Key targets such as AKT1, TNF, and IL1B were validated by molecular docking. Our studies indicated that YKS modulates asthma primarily through the PI3K/Akt and NF-κB pathways, improving airway resistance, reducing inflammation, mucus production, and airway remodeling, and decreasing Th2 cytokines and IgE levels.

Conclusion: This investigation identifies Kaempferol, Norephedrine, Cynaroside, Genistein, and Rutin as critical active ingredients in YKS, impacting key biomarkers such as AKT1, TNF, and IL1B. These substances effectively modulate the PI3K/AKT/NF-κB pathway, enhancing the management of allergic asthma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105270PMC
http://dx.doi.org/10.1186/s13020-025-01125-xDOI Listing

Publication Analysis

Top Keywords

active ingredients
12
yangke powder
8
asthma
8
allergic asthma
8
ingredients yks
8
molecular docking
8
akt1 tnf
8
tnf il1b
8
yks
7
powder alleviates
4

Similar Publications

Enantioselective Synthesis of Spirooxindole Derivatives through Lewis Acid-Catalyzed Michael Addition/Cyclization Cascade.

J Org Chem

September 2025

Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. of China.

A Mg(OTf)-catalyzed asymmetric Michael addition/cyclization cascade reaction between 3-isothiocyanato oxindoles and 2-arylidene-1,3-indanediones has been developed. This transformation provides an efficient and concise approach to biologically important bispiro[indanedione-oxindole-pyrrolidinyl]s under mild conditions in good to excellent yields (70-99% yields) with moderate to good stereoselectivities (up to 99% and >95:5 d.r.

View Article and Find Full Text PDF

Aims: The increasing antimicrobial resistance, particularly in Acinetobacter baumannii, complicates the treatment of infections, leading to higher morbidity, mortality, and economic costs. Herein, we aimed to determine the in vitro antimicrobial, synergistic, and antibiofilm activities of colistin (COL), meropenem, and ciprofloxacin antibiotics, and curcumin, punicalagin, geraniol (GER), and linalool (LIN) plant-active ingredients alone and in combination against 31 multidrug-resistant (MDR) A. baumannii clinical isolates.

View Article and Find Full Text PDF

Background: Atherosclerosis (AS) is a leading risk factor for cardiovascular diseases globally, characterised by the accumulation of lipids and cholesterol in arterial walls, causing vascular narrowing and sclerosis along with chronic inflammation; this leads to increased risk of heart disease and stroke, significantly impacting patients' health. Danxia Tiaoban Decoction (DXTB), a traditional Chinese medicine (TCM) formula, has demonstrated positive clinical effects in treating AS; however, its mechanisms of action remain unclear.

Objective: To explore the potential mechanisms of action of DXTB in treating AS through multi-omics integration and experimental validation.

View Article and Find Full Text PDF

Polyphenol from walnut septum alleviates DSS-induced colonic injury by regulating the PI3K-AKT pathway signaling and gut microbiota in mice.

Phytomedicine

August 2025

College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; Yunnan Provincial Engineering Research Center for Edible

Background: Walnut septum, a Juglans regia L. by-product with culinary-medicinal value, is a rich source of bioactive polyphenols. The chemical complexity and anti-colitis activities of these polyphenols remain uncharacterized.

View Article and Find Full Text PDF

A magnetic porous carbon material achieving rapid and convenient separation of volatile cinnamaldehyde in cinnamon.

J Chromatogr A

September 2025

State Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China. Electronic address:

Rapid and convenient enrichment and detection of volatile cinnamaldehyde (Cin) from a common herbal medicine, cinnamon, was achieved through a reliable MSPE-HPLC-DAD approach. The magnetic porous carbon material (Carbon-FeC/lignin) used for MSPE was prepared as follows. First, the metal organic framework (MIL-101-NH (Fe)) was synthesized using the solvothermal method.

View Article and Find Full Text PDF