Highly Efficient Narrowband Circularly Polarized Luminescence from Discrete Supramolecular Aggregates.

Adv Mater

State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P.R. China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Achieving narrowband emission, high efficiency, and circularly polarized luminescence (CPL) in organic light-emitting diodes (OLEDs) remains a significant challenge. In this study, a discrete supramolecular dimerization strategy is presented to overcome this limitation. By incorporating a helical arylamine with a sterically demanding configuration into a multi-resonance narrowband emitter, the formation of a unique dimeric structure in the solid state is enabled. Unlike conventional multi-resonance emitters prone to aggregation-caused quenching and continuous stacking, the CPL emitters form discrete, well-separated dimers. This distinct supramolecular arrangement not only preserves high photoluminescence quantum yield and narrowband emission but also amplifies CPL signals by optimizing intermolecular electronic coupling. OLEDs incorporating these enantiomers at a 10 wt.% doping level exhibit outstanding performances, including a narrow full-width at half-maximum of 30 nm, maximum external quantum efficiencies (EQE) of 33.5% and 32.4%, and impressive electroluminescence dissymmetry factors (g) of +8.7 × 10 and -9.1 × 10, respectively. Remarkably, increasing the doping concentration to 20 wt.% further boosts the g values to +1.6 × 10 and -1.8 × 10. This enhancement leads to Figures of Merit (EQE × |g|) of 3.71 × 10 and 4.12 × 10, among the highest values for CPL devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202420611DOI Listing

Publication Analysis

Top Keywords

circularly polarized
8
polarized luminescence
8
discrete supramolecular
8
narrowband emission
8
highly efficient
4
narrowband
4
efficient narrowband
4
narrowband circularly
4
luminescence discrete
4
supramolecular aggregates
4

Similar Publications

Circularly polarized luminescence (CPL) has emerged as a critical technology for anticounterfeiting and optical display applications due to its unique chiroptical properties. We report a multicolor CPL-emitting elastomeric film (P37/PSK@SiO-PDMS) that synergistically combines chiral helical polyacetylene (P37) and a surface-engineered perovskite (PSK@SiO) through hydrogen-bond-directed assembly. Confinement within the PDMS matrix drives P37 to self-assemble into a chiral supramolecular structure through hydrogen bonding, inducing a chiroptical inversion.

View Article and Find Full Text PDF

Helicenes are circularly polarized luminescence (CPL)-active but suffer from a fundamental tradeoff between fluorescence quantum yield (Φ) and luminescence dissymmetry factor (||). Herein, we present a strategy combining lateral π-extension and helical elongation in carbazole-embedded helicenes to address this challenge. Specifically, π-extended diaza[7]helicene () and diaza[9]helicene () were synthesized and characterized, revealing nearly a 2-fold increase in Φ and a 6-fold enhancement in || from to .

View Article and Find Full Text PDF

Helically ordered chiral super spaces enable optical chirality in hybrid organic-inorganic perovskite crystals.

J Colloid Interface Sci

September 2025

Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea. Electronic address:

We present a supramolecular templating strategy for inducing chirality in hybrid perovskites via confined crystallization within chiral super spaces-nanoconfined, helically ordered cavities formed by the self-assembly of achiral bent-core molecules with chiral additives. Upon removal of the additives, the resulting porous films retain permanent chirality. Quasi-2D hybrid organic-inorganic perovskites crystallized within these templates exhibit distinct chiroptical activity, including mirror-image circular dichroism and circularly polarized light emitting (CPLE), with CPLE dissymmetry factors reaching up to 1.

View Article and Find Full Text PDF

Towards Floquet Chern insulators of light.

Nat Nanotechnol

September 2025

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.

Topological photonics explores photonic systems that exhibit robustness against defects and disorder, enabled by protection from underlying topological phases. These phases are typically realized in linear optical systems and characterized by their intrinsic photonic band structures. Here we experimentally study Floquet Chern insulators in periodically driven nonlinear photonic crystals, where the topological phase is controlled by the polarization and the frequency of the driving field.

View Article and Find Full Text PDF

Chiral spin constrained assemblies for polarized optical mapping.

Sci Adv

September 2025

Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026 China.

Optical-enabled identification and interaction provide an integral link between the digital and physical realms. However, nowadays optic-encodings, predominantly reliant on light's intensity and wavelength, are hindered by environmental light interference and limited information capacity. The introduction of unusual polarization states, such as circular polarization-which is absent from ordinary surroundings-holds promise for higher-dimensional interaction.

View Article and Find Full Text PDF