98%
921
2 minutes
20
Background: Despite successful recanalization after thrombectomy in patients with acute ischemic stroke, poor prognosis often persists. This study aimed to investigate the factors contributing to clinically ineffective reperfusion (CIR), develop and validate a machine-learning model to predict CIR, and provide guidance for future clinical treatments.
Methods: We collected data from patients undergoing thrombectomy at Shanghai Fourth People's Hospital between December 2021 and June 2024. The clinical variables were compared between the clinically ineffective and effective recanalization groups using univariate analysis. Four machine learning models were developed: random forest (RF), support vector machine (SVM), decision tree (DT), and k-nearest neighbor (KNN). Model performance was evaluated using receiver operating characteristic (ROC) curves and heatmap visualization. The SHAP method rank the feature importance and provided interpretability for the final model.
Results: Among the four machine learning models, the RF model showed the best performance, with an area under the curve (AUC) of 0.96 (95% CI: 0.91-1.0), accuracy of 0.93, and specificity of 0.97 on the test dataset. The SHAP algorithm identified the number of endovascular thrombectomy (EVT) attempts as the key factor influencing CIR. Based on the RF model, a web-based calculator for CIR prediction is available at https://ineffectivereperfusion.shinyapps.io/calculate/. The final model included ten parameters: EVT attempts, diabetes mellitus, previous ischemic stroke, National Institutes of Health Stroke Scale (NIHSS score), preoperative infarction in the basal ganglia, baseline diastolic blood pressure, clot burden score (CBS)/basilar artery on computed tomography angiography (BATMAN) score, stroke cause, collateral grade, and MLS.
Conclusion: We developed and validated the first interpretable machine learning model for CIR prediction after EVT, surpassing traditional methods. Our CIR risk prediction platform enables early intervention and personalized treatment. The number of EVT attempts has emerged as a key determinant, underscoring the need for optimized procedural timing to improve outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12057630 | PMC |
http://dx.doi.org/10.2147/TCRM.S520362 | DOI Listing |
Front Digit Health
August 2025
Department of Ophthalmology, Stanford University, Palo Alto, CA, United States.
Introduction: Vision language models (VLMs) combine image analysis capabilities with large language models (LLMs). Because of their multimodal capabilities, VLMs offer a clinical advantage over image classification models for the diagnosis of optic disc swelling by allowing a consideration of clinical context. In this study, we compare the performance of non-specialty-trained VLMs with different prompts in the classification of optic disc swelling on fundus photographs.
View Article and Find Full Text PDFInt J Gen Med
September 2025
Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.
Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.
Neurotrauma Rep
August 2025
Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).
View Article and Find Full Text PDFJ Clin Exp Hepatol
August 2025
Dept of Histopathology, PGIMER, Chandigarh, 160012, India.
Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.
View Article and Find Full Text PDFFront Rehabil Sci
August 2025
Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.
Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.