Foxp3 confers long-term efficacy of chimeric antigen receptor-T cells via metabolic reprogramming.

Cell Metab

Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China. Electronic address:

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The tumor microenvironment, characterized by low oxygen tension and scarce nutrients, impairs chimeric antigen receptor (CAR)-T cell metabolism, leading to T cell exhaustion and dysfunction. Notably, Foxp3 confers a metabolic advantage to regulatory T cells under such restrictive conditions. Exploiting this property, we generated CAR-T cells by co-expressing Foxp3 with a third-generation CAR construct. The CAR-T cells exhibited distinct metabolic reprogramming, marked by downregulated aerobic glycolysis and oxidative phosphorylation coupled with upregulated lipid metabolism. This metabolic shift was driven by Foxp3's interaction with dynamin-related protein 1. Crucially, CAR-T cells did not acquire regulatory T cell immunosuppressive functions but instead demonstrated enhanced antitumor potency and reduced expression of exhaustion markers via Foxp3-mediated adaptation. The potent antitumor effect and absence of immunosuppression were confirmed in a humanized immune system mouse model. Our findings establish a metabolic reprogramming-based strategy to enhance CAR-T cell adaptability within the hostile tumor microenvironment while preserving therapeutic efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmet.2025.04.008DOI Listing

Publication Analysis

Top Keywords

car-t cells
12
foxp3 confers
8
chimeric antigen
8
metabolic reprogramming
8
tumor microenvironment
8
car-t cell
8
cells
5
metabolic
5
car-t
5
confers long-term
4

Similar Publications

Patients with primary plasma cell leukemia (pPCL), particularly those with extramedullary disease (EMD), face a poor prognosis even with chimeric antigen receptor (CAR)-T cell therapy. This case report describes a patient with relapsed/refractory pPCL and life-threatening malignant pleural effusion (PE) treated with intrapleural CAR-T cells targeting B-cell maturation antigens. CAR-T cell expansion within the PE was observed, along with a rapid reduction in leukemia cell count and PE volume.

View Article and Find Full Text PDF

Nanotechnology for CAR T cells and tumour-infiltrating lymphocyte therapies.

Nat Nanotechnol

September 2025

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.

Adoptive T-cell therapies, and particularly CAR T cells and tumour-infiltrating lymphocytes, have transformed cancer treatment by selectively targeting malignant cells. Despite their clinical success, these therapies face substantial challenges, including costly manufacturing processes and tumour-imposed barriers that limit efficacy. Advances in understanding the nanoscale mechanisms governing T-cell activation and the role of the tumour microenvironment in restricting T-cell responses have driven the development of nanotechnology-based strategies that integrate key chemical and physical cues.

View Article and Find Full Text PDF

With the approval of the antibody-drug conjugate enfortumab vedotin (EV), NECTIN4 has emerged as a bona fide therapeutic target in urothelial carcinoma (UC). Here, we report the development of a NECTIN4-directed chimeric antigen receptor (CAR) T cell, which exhibits reactivity across cells expressing a range of endogenous NECTIN4, with enhanced activity in high expressors. We demonstrate that the PPARγ pathway, critical for luminal differentiation, transcriptionally controls NECTIN4, and that the PPARγ agonist rosiglitazone primes and augments NECTIN4 expression, thereby increasing sensitivity to NECTIN4-CAR T cell-mediated killing.

View Article and Find Full Text PDF

Background: Tumor heterogeneity and antigen escape are mechanisms of resistance to chimeric antigen receptor (CAR)-T cell therapy, especially in solid tumors. Targeting multiple antigens with a unique CAR construct could be a strategy for a better tumor control than monospecific CAR-T cells on heterogeneous models. To overcome tumor heterogeneity, we targeted mesothelin (meso) and Mucin 16 (MUC16), two antigens commonly expressed in solid tumors, using a tandem CAR design.

View Article and Find Full Text PDF

Comparative efficacy and safety of PSCA CAR-engineered Vδ1 γδ T cells for immunotherapy of pancreatic cancer.

J Immunother Cancer

September 2025

Division of Hematology & Oncology, Department of Medicine, School of Medicine, University of California, Irvine, California, USA

Background: γδ T cells possess unique immunological features including tissue tropism, major histocompatibility complex-independent antigen recognition, and hybrid T/natural killer cell properties that make them promising candidates for cancer immunotherapy. However, the therapeutic potential of Vδ1 γδ T cells, particularly when engineered with chimeric antigen receptors (CARs), remains underexplored in solid tumors such as pancreatic cancer (PC), largely due to their low abundance in peripheral blood and challenges in ex vivo expansion. This study aims to directly compare the preclinical safety and efficacy among CAR-engineered Vδ1 γδ T cells, Vδ2 γδ T cells, and conventional αβ T cells.

View Article and Find Full Text PDF