98%
921
2 minutes
20
Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for hematological malignancies, particularly B-cell malignancies. However, its high risk of relapse and low efficacy in malignancies such as chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML) have limited its clinical utility. The expansion, infiltration and persistence of CAR-T cells are key determinants of their efficacy. It has been recognized that limited expansion and lack of persistence are major contributors to non-remission and early relapse, highlighting the need to elucidate their mechanisms and countermeasures. In this review, we described features of CAR-T cell expansion and persistence in various hematogenic malignancies and solid tumors. Then, current knowledge on the mechanisms underlying deficiency in CAR-T cell expansion and persistence is presented, focusing on the intrinsic deficiency of CAR-T cells as well as their interaction with the systemic and local immune environment. Finally, we summarize approaches to enhance CAR-T cell expansion and persistence by improving CAR-T cell quality and overcoming the immunosuppressive environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.canlet.2025.217771 | DOI Listing |
Curr Med Sci
September 2025
Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Objective: To develop a novel prognostic scoring system for severe cytokine release syndrome (CRS) in patients with B-cell acute lymphoblastic leukemia (B-ALL) treated with anti-CD19 chimeric antigen receptor (CAR)-T-cell therapy, aiming to optimize risk mitigation strategies and improve clinical management.
Methods: This single-center retrospective cohort study included 125 B-ALL patients who received anti-CD19 CAR-T-cell therapy from January 2017 to October 2023. These cases were selected from a cohort of over 500 treated patients on the basis of the availability of comprehensive baseline data, documented CRS grading, and at least 3 months of follow-up.
Ann Hematol
September 2025
Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Approximately 30-40% of diffuse large B-cell lymphoma (DLBCL) patients will develop relapse/refractory disease, who may benefit from novel therapies, such as CAR-T cell therapy. Thus, accurate identification of individuals at high risk of early chemoimmunotherapy failure (ECF) is crucial. Methods.
View Article and Find Full Text PDFAnn Hematol
September 2025
Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China.
Chimeric antigen receptor (CAR) therapies have demonstrated remarkable clinical efficacy in hematological malignancies, validating their therapeutic potential. However, challenges such as therapeutic resistance and limited accessibility hinder their broader application. To overcome these limitations, alternative CAR-based cell therapies, including CAR-Natural Killer (CAR-NK), CAR-macrophage (CAR-M), and CAR-dendritic cell (CAR-DC) therapies, have been proposed.
View Article and Find Full Text PDFCytotherapy
July 2025
IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy; Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy. Electronic address:
Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of aggressive B-cell non-Hodgkin lymphoma, particularly in relapsed/refractory large B-cell lymphoma and mantle cell lymphoma. Despite its transformative potential, significant challenges persist in optimizing patient identification and referral pathways to ensure timely and equitable access. This expert consensus, developed through the Delphi methodology, analyzes key barriers to the referral process and proposes structured solutions to enhance collaboration between referring treatment centers (RTCs) and qualified treatment centers (QTCs).
View Article and Find Full Text PDFEur J Haematol
September 2025
Department of Hematology-Oncology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
B-cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T-cell therapies have revolutionized the approach and management of relapsed/refractory multiple myeloma (RRMM), and as of 2025, idecabtagene vicleucel (ide-cel) and ciltacabtagene autoleucel (cilta-cel) are the only BCMA-targeted CAR T-cell therapies approved by the FDA. Exceptional responses were demonstrated for heavily pretreated patients in the KarMMa-1 trial, reporting a 73% overall response rate (ORR) and 98% in the CARTITUDE-1 trial. Furthermore, both therapies show a significant improvement in progression-free survival (PFS) compared to standard regimens when administered in earlier lines.
View Article and Find Full Text PDF