Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The recent national primary drinking water regulation for per- and polyfluoroalkyl substances (PFAS) is expected to drive a nationwide increase in granular activated carbon (GAC) usage in water treatment facilities across the United States. Proper management of PFAS-laden GAC waste streams is essential to prevent potential recontamination. This study systematically evaluates PFOA and PFOS leaching from four commercial GACs using three standard batch leaching procedures. Our findings indicate that PFOA leached 1-2 orders of magnitude more than PFOS across all GAC types and leaching procedures. In general, PFAS leaching was more notable for alkaline leaching conditions, especially for wood-based GAC. Additionally, real groundwater spiked with an 8 PFAS mixture was used to load GAC for leaching propensity demonstration, and similar conclusions were reached, where leaching was generally greater for shorter-chain and more hydrophilic PFAS. PFBA exhibited the highest leaching (10.4%), followed by GenX (0.91%) and PFBS (0.75%), while minimal desorption (<0.02%) was observed for long-chain PFOA, PFOS, PFOSA, and PFNA. The study concluded that a complex interplay of multiple interactions between the GAC surface, PFAS molecules, and constituents of leaching solutions controls leaching.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.4c12093DOI Listing

Publication Analysis

Top Keywords

leaching procedures
12
leaching
9
per- polyfluoroalkyl
8
polyfluoroalkyl substances
8
granular activated
8
gac
5
analyzing release
4
release per-
4
substances spent
4
spent granular
4

Similar Publications

Waste three-way catalysts (TWCs) and waste LiCoO batteries represent critical environmental challenges due to hazardous components yet contain high-value resources, and their recycling has garnered widespread attention. We propose a novel 'waste-to-waste' synergistic recycling where spent LiCoO batteries reconstruct mineral phases of waste TWCs, enabling co-recovery of platinum group metals and Li/Co without traditional oxidants. However, the environmental performance of this process still requires further analysis.

View Article and Find Full Text PDF

Background And Objectives: Chiari 1 malformation (CM1) is a common MRI finding and a frequent reason for neurosurgical consultation. Although many studies have investigated surgical outcomes for patients with CM1, outcomes for those treated without surgery have been less frequently reported. The UK Chiari 1 Study reports the quality of life of adults and children with CM1 treated without surgery, 12 months after the first neurosurgical clinic visit.

View Article and Find Full Text PDF

The long-term accumulation of electrolytic manganese residue leads to pollution issues related to NH -N and Mn. Although various methods exist to address the pollution caused by NH -N and Mn, existing hazard-free treatment methods do not consider the subsequent utilization of the electrolytic manganese residue. Meanwhile, resource recovery methods face challenges due to the complex salt structures present in electrolytic manganese residue.

View Article and Find Full Text PDF

Phosphogypsum and Carbide Slag Synergy for Red Mud Soil Stabilization: Mechanical Performance, Environmental Impacts, and Micro-scale Mechanisms.

Environ Res

September 2025

China Construction Fourth Engineering Bureau Fifth Construction Engineering Co., Ltd. Nanxin Road, Nanshan District, Shenzhen, 518000, China. Electronic address:

The production of phosphogypsum (PG), calcium carbide slag (CS), and red mud (RM) in global industrial development imposes serious environmental issues. Utilizing CS and PG as curing agents and incorporating RM as a soil substitute can facilitate the solid waste resource utilization. However, few studies have investigated the synergistic effects of PG and CS on the stabilization of RM and soil.

View Article and Find Full Text PDF

High Performance Monometallic Platinum Fuel Cell Catalyst Derived from Self-Hole-Confined Nanoparticles and Nitrogen-Anchored Single-Atoms.

Small Methods

September 2025

Research Center for Analysis and Measurement, Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China.

Platinum and non-precious metal (PtM) alloy multimetallic catalysts have been developed to address the kinetically sluggish oxygen reduction reaction (ORR) occurring at the cathodes of proton exchange membrane fuel cells (PEMFCs). However, these catalysts inevitably suffer from poor lot-to-lot consistency of chemical compositions and structures during production, and the transition metal leaching in practical applications. Thus, the development of high-performance monometallic Pt catalysts using innovative nanoarchitectures has become important to address the technical challenges that hinder the widespread deployment of the PEMFCs.

View Article and Find Full Text PDF