98%
921
2 minutes
20
The accumulation of foam cells in the arterial walls is a defining characteristic of atherosclerosis. Enhancing their migration from plaques may represent a key strategy for slowing disease progression. Recent studies suggest that fucosyltransferase 8 (Fut8) impairs macrophage migration from the intima by modifying the Unc5b membrane receptor, thereby influencing the development of atherosclerosis. This study investigated the roles of Fut8 and Unc5b in foam cell migration using ApoE mouse and foam cell models, employing techniques such as western blotting, mitochondrial function assays, wound healing experiments, and immunofluorescence staining. The findings indicate that Fut8 upregulation increases P53 expression and reduces SLC7A11 and GPX4 levels, leading to altered intracellular concentrations of GSH and Fe, impaired mitochondrial function, and reduced migration capacity, all of which promote atherosclerosis. These mechanisms are closely associated with ferroptosis. Intervention with N-acetylcysteine (NAC) and buthionine sulfoximine (BSO) demonstrated that NAC mitigates oxidative stress and migration inhibition, induced by oxidized low-density lipoprotein (ox-LDL). Additionally, inhibiting ferroptosis slowed the progression of atherosclerosis in ApoE mice. Together, these results highlight that Fut8 exacerbates atherosclerosis through a P53/SLC7A11-mediated enhancement of ferroptosis in foam cells, offering a novel perspective on the pathophysiology of atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2025.04.025 | DOI Listing |
Biochem Pharmacol
September 2025
Guizhou Medical University, Guiyang 550004 Guizhou, PR China; Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004 Guizhou, PR China; The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, G
Atherosclerosis (AS), a chronic inflammatory disease and a leading cause of cardiovascular morbidity and mortality. Macrophage-mediated lipid uptake and inflammation are central to plaque formation. TREM2, an immunoreceptor expressed in macrophages, has been reported to regulate lipid metabolism and inflammation, yet its role in atherosclerosis remains controversial.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544.
Harnessing instabilities of multicomponent multistable structural assemblies can potentially lead to scalable and reversible functionalities, which can be enhanced by exploring frustration. For instance, standard Kresling origami cells exhibit nontunable intrinsic energy landscapes determined by their geometry and material properties, limiting their adaptability after fabrication. To overcome this limitation, we introduce frustration to enable fine-tuning of the energy landscape and resulting deformation states.
View Article and Find Full Text PDFCell Commun Signal
September 2025
Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 42 Wenhuaxi Road, Jinan, Shandong, China.
S-palmitoylation has emerged as a critical integrator of lipid overload and cardiovascular dysfunction. Disordered lipid metabolism inundates endothelial cells, vascular smooth muscle cells and macrophages with triglyceriderich lipoproteins, oxidized LDL and saturated fatty acids, expanding the intracellular palmitoylCoA pool and perturbing redox balance. Protein Spalmitoylation, the reversible attachment of palmitate to cysteine residues, converts excess palmitoylCoA into broad alterations in signalling and membrane dynamics.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Cardiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China.
Background: Atherosclerosis (AS), characterized by lipid accumulation, contributes significantly to global cardiovascular morbidity. Ferroptosis, an iron-dependent form of cell death triggered by lipid peroxidation, is emerging as a critical player in AS progression. Therefore, our study seeks to elucidate the intricate mechanisms of ferroptosis within the lipid metabolism pathway in AS.
View Article and Find Full Text PDFDevice
April 2025
Energy Science and Technology Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
Applying external pressure to a pouch cell results in improved performance, implicating systems-level design of batteries. Here, different formats and amounts of external pressure to Li-LiNiMnCoO (Li-NMC811) pouch cells were studied under lean electrolyte conditions. Due to the more uniform lithium plating/stripping, a constant gap fixture that retains the distance of the frame during cycling performed greater than a constant pressure fixture that retains applied pressure to the cell.
View Article and Find Full Text PDF