Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite the exciting progress of bifunctional degrader molecules, also known as proteolysis-targeting chimeras (PROTACs), the rapidly expanding field is still significantly hampered by the lack of available E3 ligase ligands. Our research bridges this gap by uncovering a series of small-molecule ligands to the E3 ligase TRIM21 through DNA-Encoded Library (DEL) technology. We confirmed their interaction with TRIM21 using crystallography and demonstrated their antiproliferative effects across various cancer cell types. Furthermore, proteomic studies identified that the mRNA Export Factor GLE1 and the Nuclear Pore Complex Protein NUP155 were significantly downregulated on TRIM21 ligand treatment. This degradation required TRIM21 and was ubiquitin-proteasome-dependent. More specifically, NUP155 was the primary target for the TRIM21 ligands, while GLE1 was considered a passenger target on initial degradation of NUP155. Using immunofluorescence techniques, we further demonstrated that the degradation of GLE1 and NUP155 proteins impaired the integrity of the nuclear envelope, leading to cell death. Highlighted by this research, a novel mode of action has been discovered for the TRIM21 E3 ligase ligand, acting as a monovalent degrader that triggers de novo interaction with functional complex proteins and induces their degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschembio.4c00833DOI Listing

Publication Analysis

Top Keywords

nuclear pore
8
pore complex
8
complex protein
8
trim21
7
degradation
5
chemically induced
4
induced nuclear
4
protein degradation
4
degradation trim21
4
trim21 despite
4

Similar Publications

Background: A hallmark of the eukaryotic cell is the regulated transport between the nucleus and cytoplasm, which is mediated by a multi-subunit protein assembly called the nuclear pore complex (NPC). While its overall architecture has been preserved across eukaryotes, variations in NPC structure appear to have tuned its function in different organisms. Outside of a handful of model systems, the NPC has not been comprehensively studied.

View Article and Find Full Text PDF

The identification of reliable biomarkers is essential for improving breast cancer (BC) detection, prognosis, and treatment. This study explores a human telomeric G-quadruplex (G4) model, tel, functionalized on Controlled Pore Glass (CPG) support, as a novel biomarker discovery tool. The oligonucleotide tel mimics multimeric G4 structures in telomeric overhangs.

View Article and Find Full Text PDF

Focal segmental glomerulosclerosis (FSGS) is a common glomerular pathology characterized by podocyte injury, which can lead to kidney failure. Among the factors contributing to podocyte damage are mutations in nuclear pore complexes (NPCs), which regulate nuclear-cytoplasmic transport of proteins and RNAs. Defective NPCs can accumulate in highly differentiated, non-dividing cells such as podocytes.

View Article and Find Full Text PDF

Super-resolution fluorescence microscopy (SRM) has enabled visualization of nanoscale cellular structures, but systematic evaluation of resolution assessment methods across diverse biological structures and SRM modalities remains lacking. Here, we comparatively assessed three resolution metrics-Full Width at Half Maximum (FWHM), decorrelation analysis, and Fourier Ring Correlation (FRC)-across two SRM techniques (Super-resolution Radial Fluctuation, SRRF; Stimulated Emission Depletion, STED) using key subcellular structures: microtubules (filaments), mitochondria (membranes), and nuclear pore protein Nup98 (single particles) in HeLa/U2OS cells. Our results showed decorrelation analysis provided robust resolution estimates across all structures and modalities (confocal/SRRF/STED), exhibiting superior performance for dense nuclear pore complexes where FWHM failed due to overlapping point spread functions.

View Article and Find Full Text PDF

Movable Oil Saturation Quantitation Evaluation in Shale Oil: Novel Insights from Distribution.

ACS Omega

August 2025

State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Efficient Development, SINOPEC, Beijing 102206, China.

The quantification of movable shale oil is crucial for the effective exploration and development of shale oil resources. Nuclear magnetic resonance (NMR), a nondestructive and noninvasive technique, has become an indispensable tool for evaluating movable oil saturation. However, the small core sizes, high-frequency instrumentation, costly measurements, and significant losses of light hydrocarbons pose substantial challenges in accurately assessing movable oil.

View Article and Find Full Text PDF