Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Severe acute pancreatitis (SAP)-induced intestinal bacterial translocation and enterogenic infection are among the leading causes of mortality in patients. However, the mechanisms by which SAP disrupted the intestinal barrier and led to bacterial translocation remained unclear. Therefore, we employed multi-omics analysis including microbiome, metabolome, epigenome, transcriptome, and mass cytometry (CyTOF) to identify potential targets, followed by functional validation using transgenic mice. The integrated multi-omics analysis primarily indicated overgrowth of intestinal flagellated bacteria, upregulation of intestinal Toll-like receptor 5 (TLR5) and acute inflammatory response, and increased infiltration of intestinal high-expressing TLR5 lamina propria dendritic cells (TLR5 LPDC) after SAP. Subsequently, intestinal flagellin-TLR5 signaling was activated after SAP. Intestinal barrier disruption, bacterial translocation, and helper T cells (Th) differentiation imbalance caused by SAP were alleviated in TLR5 knocked out () or conditionally knocked out on LPDC () mice. However, TLR5 conditional knockout on intestinal epithelial cells () failed to improve SAP-induced bacterial translocation. Moreover, depletion of LPDC and regulatory T cells (Treg) ameliorated bacterial translocation after SAP. Our findings identify TLR5 on LPDC as a potential novel target for preventing or treating intestinal bacterial translocation caused by SAP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11980482PMC
http://dx.doi.org/10.1080/19490976.2025.2489768DOI Listing

Publication Analysis

Top Keywords

bacterial translocation
28
intestinal bacterial
12
intestinal
10
severe acute
8
acute pancreatitis
8
toll-like receptor
8
intestinal barrier
8
multi-omics analysis
8
tlr5 lpdc
8
caused sap
8

Similar Publications

Background: Critically ill patients, including those with systemic inflammatory response syndrome (SIRS) and sepsis, frequently exhibit gut microbiota disruption due to physiological stress and broad-spectrum antimicrobial therapy (AT). Although antibiotics are essential for controlling infection, they can destabilize the gut microbiota and may contribute to poorer clinical outcomes. The characterization of the gut microbiota of these patients may inform microbiota-based interventions to mitigate antibiotic-induced dysbiosis.

View Article and Find Full Text PDF

Cadmium (Cad) is a worldwide heavy metal pollutant associated with global health challenges. Alteration of the intestinal microbiome, due to chemicals' exposure, plays a vital role in the pathogenesis of gastrointestinal diseases such as pancreatic disorders. Hence, modulation of the gut microbiota might be a targeted approach to manage pancreatic diseases.

View Article and Find Full Text PDF

Molecular Dynamics Simulation of the Interaction of Lipidated Structurally Nano Engineered Antimicrobial Peptide Polymers with Bacterial Cell Membrane.

J Phys Chem B

September 2025

Soft Matter Informatics Research Group, Department of Mechanical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Parkville, Victoria 3010, Australia.

The rapid emergence of multidrug-resistant (MDR) bacteria demands development of novel and effective antimicrobial agents. Structurally nanoengineered antimicrobial peptide polymers (SNAPPs), characterized by their unique star-shaped architecture and potent multivalent interactions, represent a promising solution. This study leverages molecular dynamics simulations to investigate the impact of lipidation on SNAPPs' structural stability, membrane interactions, and antibacterial efficacy.

View Article and Find Full Text PDF

Cyanobacteria achieve highly efficient photosynthesis using a CO-concentrating mechanism relying on specialized Type I (NDH-1) complexes. Among these, NDH-1 and NDH-1 catalyze redox-coupled hydration of CO to bicarbonate, supporting carbon fixation in carboxysomes. The mechanism of coupling electron transfer to CO-hydration by these variant NDH-1 complexes remains unknown.

View Article and Find Full Text PDF

Gabija restricts phages that antagonize a conserved host DNA repair complex.

bioRxiv

August 2025

UC San Francisco, Dept. of Microbiology & Immunology, 600 16th St N374, San Francisco, CA 94158.

Anti-bacteriophage systems like restriction-modification and CRISPR-Cas have DNA substrate specificity mechanisms that enable identification of invaders. How Gabija, a highly prevalent nuclease-helicase anti-phage system, executes self- vs. non-self-discrimination remains unknown.

View Article and Find Full Text PDF