98%
921
2 minutes
20
Herein, we reported a DBU-catalyzed cascade and sequential [1 + 2 + 3] annulation of malononitrile with α,β-unsaturated ketones to access polyfunctionalized cyclohexanes with high yield and excellent diastereoselectivity (>93% yield, >19:1 dr). Intriguingly, this appears to be the new strategy for using α,β-unsaturated ketones either as or synthon to react with dinucleophile synthon to construct six-membered carbocycles in one-pot manner. In addition, these synthesized compounds suppressed the growth of phytopathogenic fungi in vitro. Among them, compound exhibited excellent and broad antifungal activity, which possesses potential as an agricultural antifungal agent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.4c02444 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, No.55 West Zhongshan Avenue, Tianhe District, Guangzhou 510631, Guangdong, China.
While reactive oxygen species (ROS)-dependent chemodynamic therapy (CDT) and photodynamic therapy (PDT) hold promise for cancer treatment, their efficacy remains constrained by tumor microenvironment (TME) barriers: glutathione (GSH) overexpression, insufficient HO supply, and hypoxia. To address these limitations, we engineered a Trojan horse-inspired MnO-shelled CaO nanoreactor (CaO/MnO-Ce6-PEG) by employing a sequential TME reprogramming strategy, triggering a cascading ROS storm for enhanced CDT and PDT. The outer MnO layer first depletes GSH through redox conversion, exposing the CaO core hydrolysis, and subsequently providing HO for CDT and O for ameliorating hypoxia to boost Ce6-mediated PDT.
View Article and Find Full Text PDFBiosens Bioelectron
September 2025
Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School
DNAzymes possessing kinase-like activities have long held theoretical promise, yet their practical implementation has remained significantly limited. Notably, DNAzyme kinase 1 (DK1), discovered over two decades ago, exhibits a unique self-phosphorylation capability upon encountering specific substrates like ATP, but its broad-based and programmable applications have not yet been fully realized. In this study, we innovatively couple DK1's autophosphorylation mechanism with the PfAgo to establish a novel programmable cascade sensing platform named RASTEN (Robust pfAgo-based Strategy for POC Testing Non-nucleic Acid and Nucleic Acid).
View Article and Find Full Text PDFChemSusChem
September 2025
Organic Chemistry Institute, University of Münster, Corrensstraße 36, 48149, Münster, Germany.
A three-step, one-pot, sequential cascade starting from simple feedstocks to increase complexity toward value-added chiral synthetic building blocks is reported. This is achieved by precisely integrating organic photocatalysis and noncovalent organocatalysis, often operating at dissimilar conditions and reaction media. In particular, this strategy is used to enable the direct transformation of readily available benzylic substrates, such as methylbenzenes, benzyl alcohols, or amines, into enantioenriched α-aminonitriles by benzylic CH photooxidation to their corresponding aldehydes, followed by in situ imine formation and final asymmetric organocatalytic Strecker reaction.
View Article and Find Full Text PDFActa Biomater
September 2025
School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China; Shenzhen Institute of Wuhan University of Technol
Tumor heterogeneity poses formidable challenges to effective cancer therapy, necessitating the implementation of combination regimens to achieve enhanced antitumor efficacy. Optimizing drug administration sequences is pivotal to harnessing synergistic effects and achieving superadditive therapeutic outcomes (1+1>2). Erlotinib, an epidermal growth factor receptor (EGFR) inhibitor, dynamically reprograms apoptotic pathways, sensitizing tumor cells to subsequent DNA-damaging agents like doxorubicin within a defined temporal window, thereby augmenting chemotherapy efficacy.
View Article and Find Full Text PDFSci Adv
September 2025
Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
Cancer stem cells (CSCs) and myeloid-derived suppressor cells (MDSCs) contribute to chemoresistance and immunosuppression, constraining chemoimmunotherapy outcomes. Differentiation therapy, aiming to mature CSCs and MDSCs, shows great promise. However, its efficacy is hindered by limited accessibility in hypoxic deep tumor regions.
View Article and Find Full Text PDF