98%
921
2 minutes
20
Despite advances in surgical techniques for tendon injuries and improvements in rehabilitation, the challenge of achieving sufficient tendon regeneration and preventing postoperative tissue adhesions persists for orthopedic surgeons. In this study, we developed a multilayer film with a platelet-derived growth factor-BB (PDGF-BB)-immobilized leaf-stacked structure (LSS) layer (bioactive layer) and an alginate layer (antiadhesive layer) on both sides of a PCL film (). The porous LSS layer on the PCL film was fabricated using a heating-cooling method with tetraglycol, where PDGF-BB was adsorbed onto the LSS layer. An alginate coating was applied on the opposite side to form the antiadhesion layer. The PDGF-BB loaded on the LSS layer provided a sustained release at effective concentrations for over 29 days. From in vitro cell culture and in vivo animal studies, the alginate layer proved effective in preventing cell/tissue adhesion; meanwhile, the bioactive layer facilitated tenogenic differentiation in BMSCs and supported tendon regeneration. Accordingly, we propose that offers a viable strategy for effective tendon regeneration in clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.5c00131 | DOI Listing |
Front Bioeng Biotechnol
August 2025
Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, Guangdong, China.
Introduction: During the healing process, the functional gradient attachment of the rotator cuff (RC) tendon-bone interface fails to regenerate, which severely impedes load transfer and stress dissipation, thereby increasing the risk of retears. As a result, the treatment of rotator cuff tears remains a significant clinical challenge.
Methods: In this study, a dual-crosslinked hyaluronic acid/polyethylene glycol (HA/PEG) hydrogel scaffold was synthesized using hyaluronic acid and polyethylene glycol as base materials.
J Wound Care
September 2025
Houston Methodist Willowbrook Hospital, Houston, TX, US.
Objective: Purified collagen matrix containing a broad-spectrum antimicrobial, polyhexamethylene biguanide (PuraPly Antimicrobial (PCMP); Organogenesis Inc., US) has been shown to be an effective adjunct in managing wounds of different aetiologies. The aim of this study was to show the clinical outcomes of PCMP in the management of pressure injuries (PIs) and its implication on healthcare.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Department of Sports Medicine, Shanghai General Hospital, Shanghai, China.
Rotator cuff tears (RCTs) are a prevalent cause of shoulder dysfunction, with postoperative retearing remaining a significant challenge due to poor tendon-to-bone healing. Mesenchymal stem cells (MSCs), owing to their multipotency, immunomodulatory properties, and diverse tissue sources, have emerged as a promising therapeutic strategy. Current approaches include direct MSC implantation, MSC-laden scaffolds for structural support, and utilization of MSC-derived conditioned medium (CM) or exosomes to enhance regeneration.
View Article and Find Full Text PDFInt J Pharm X
December 2025
Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States.
Orthopedic disorders affecting bones, joints, muscles, tendons, and other tissues are prevalent among outpatients, often caused by trauma, sports, or tumor removal. Surgical intervention is common but may yield unsatisfactory results due to limited regenerative capacity and poor blood supply. Platelet-rich plasma (PRP), an autologous biocomponent, has been clinically applied in tissue regeneration and repair, yet it faces challenges such as unclear mechanisms, side effects, and uncontrollable release.
View Article and Find Full Text PDFMater Today Bio
October 2025
Department of Pediatric Orthopedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, PR China.
Tendinopathy, a prevalent musculoskeletal disorder characterized by chronic pain and functional decline, remains a therapeutic challenge due to the limited efficacy of conventional treatments in addressing oxidative stress and persistent inflammation. Here, we present Prussian blue nanozymes (PBzymes) as a catalytic nanomedicine engineered to mimic multi-enzyme activities, offering a potent strategy for tendon microenvironment modulation and repair. Synthesized via a hydrothermal template-free approach, PBzymes exhibit robust reactive oxygen species (ROS)-scavenging capabilities through intrinsic superoxide dismutase, catalase, and peroxidase-like activities, effectively neutralizing •OH, HO, and •OOH radicals.
View Article and Find Full Text PDF