Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: The proposed mechanisms of spinal cord stimulation (SCS) follow the polarization of dorsal column axons; however, the development of subparesthesia SCS has encouraged the consideration of different targets. Given their relative proximity to the stimulation electrodes and their role in pain processing (eg, synaptic processing and gate control theory), spinal cord dorsal horn interneurons may be attractive stimulation targets.

Materials And Methods: We developed a computational modeling pipeline termed "quasiuniform-mirror assumption" and applied it to predict polarization of dorsal horn interneuron cell types (islet type, central type, stellate/radial, vertical-like) to SCS. The quasiuniform-mirror assumption allows the prediction of the peak and directional axes of dendrite polarization for each cell type and location in the dorsal horn, in addition to the impact of the stimulation pulse width and electrode configuration.

Results: For long pulses, the peak polarization per milliampere of SCS with a spaced bipolar configuration was islet type 3.5mV, central type 1.3mV, stellate/radial 1.4mV, and vertical-like 1.6mV. For stellate/radial, the peak dendrite polarization was dorsal-ventral, and for islet-type, the peak dendrite polarization was in the rostral-caudal axis. For islet type and central type cells, peak dendrite polarization was between stimulation electrodes, whereas for stellate/radial and vertical-like cells, peak dendrite polarization was under the stimulation electrodes. The impact of the pulse width depends on the membrane time constants. Assuming a 1-millisecond time constant, for a 1-millisecond or 100-μs pulse width, the peak dendrite polarization decreases (from direct current values) by approximately 33% and approximately 88%, respectively. Increasing the interelectrode distance beyond approximately 3 cm did not significantly increase the peak polarization but expanded the region of interneuron polarization.

Conclusions: Predicted maximum polarization of islet-cells in the superficial dorsal horn at locations between electrodes is 4.6mV for 2 mA, 1-millisecond pulse SCS. A polarization of a few millivolts is sufficient to modulate synaptic processing through subthreshold mechanisms. Our simulations provide support for SCS approaches optimized to modulate the dendrites of dorsal horn neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurom.2025.01.015DOI Listing

Publication Analysis

Top Keywords

dorsal horn
24
dendrite polarization
24
peak dendrite
20
polarization
13
spinal cord
12
stimulation electrodes
12
islet type
12
central type
12
pulse width
12
cord stimulation
8

Similar Publications

The thermal grill elicits central sensitization.

Pain

August 2025

Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.

The thermal grill, in which innocuous warm and cool stimuli are interlaced, can produce a paradoxical burning pain sensation-the thermal grill illusion (TGI). Although the mechanisms underlying TGI remain unclear, prominent theories point to spinal dorsal horn integration of innocuous thermal inputs to elicit pain. It remains unknown whether the TGI activates peripheral nociceptors, or solely thermosensitive afferents that are integrated within the spinal cord to give rise to a painful experience.

View Article and Find Full Text PDF

Introduction: The dorsal horn (DH) of the spinal cord is physiologically immature at birth. Spinal excitability increases and wide dynamic range (WDR) neurons in lamina V have lowered activation thresholds and larger receptive field sizes.

Objective: The DH is composed of 5 laminae containing diverse interneuronal populations yet our understanding of the physiology of the DH is based on behavioural studies or extrapolation of single cell WDR recordings to the whole network.

View Article and Find Full Text PDF

Association and mechanism of Ligusticum chuanxiong alleviating itch: A combination of experimental and network pharmacology study.

J Ethnopharmacol

September 2025

Department of Anesthesiology and Perioperative Medicine, Affiliated First Hospital of Ningbo University, Ningbo 315010, China; Key Laboratory of Anesthesiology and Pain Medicine, Ningbo Hospital of Zhejiang University, Ningbo 315010, China. Electronic address:

Ethnopharmacological Relevance: Ligusticum chuanxiong (CX) is a traditional Chinese medicine with diverse effects, such as anti-inflammatory, antioxidant, neuroprotective, anti-nociceptive, and anticancer properties. It has been used in clinical applications with satisfying therapeutic effects. However, the underlying mechanism that contributes to the anti-pruritic effects remains to be comprehensively investigated.

View Article and Find Full Text PDF

Somatotopy is a recurring organisational feature of the somatosensory system where adjacent neurons and their connections represent adjacent regions of the body. The molecular mechanisms governing the formation of such "body maps" remain largely unknown. Here we demonstrate that the cell surface proteins teneurin-3 and latrophilin-2 are expressed in opposing gradients in multiple somatotopic maps in the mouse, including within the dorsal horn of the spinal cord.

View Article and Find Full Text PDF

CX3CR1 modulates acute disc herniation-induced pain via regulating local inflammation and spinal microglia activation.

Osteoarthritis Cartilage

September 2025

Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA. Electronic address:

Objective: Inflammation is a key driver of disc herniation, a major cause of back pain and disability. Heterogeneous macrophages infiltrated at disc hernia sites, yet their role in disease pathology and pain remains unclear. This study investigates the role of CX3CR1⁺ macrophages and microglia in local inflammation and pain using transgenic mouse models and surgically induced disc herniation model.

View Article and Find Full Text PDF