98%
921
2 minutes
20
Graphene has garnered significant attention due to its unique and remarkable properties. The widespread application of graphene materials in numerous fields inevitably leads to their release into the environment. This study examines the long-term impacts of graphene on anaerobic sequencing batch reactors. The low-concentration graphene (5 mg L) exhibited a significant inhibitory effect on the removal of chemical oxygen demand, while the high-concentration group (100 mg L) was less affected. The transmission electron microscopy and Raman spectroscopy results demonstrated that the anaerobic sludge could attack graphene materials, and cell viability tests showed that high concentrations of graphene were more conducive to microbial attachment. High-throughput sequencing revealed significant alterations in the microbial community structure under graphene pressure. and gradually became the dominant genera in the high-concentration group. Network analysis showed that graphene increased the complexity and interaction of microbial communities. Additionally, high-throughput qPCR analysis demonstrated that graphene influenced the dynamics of antibiotic resistance genes, with most exhibiting increased abundance over time, especially in the low-concentration group. Consequently, when considering the application of graphene in wastewater treatment, it is crucial to evaluate potential risks, including its effects on system performance and the likelihood of antibiotic resistance gene enrichment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4em00562g | DOI Listing |
Microb Drug Resist
September 2025
Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran.
Fluoroquinolone resistance in , particularly uropathogenic (UPEC), is a growing concern worldwide. This study investigates the association between mutations in the and genes and fluoroquinolone resistance in UPEC isolates from Urine samples in Iran. In total, 150 UPEC isolates were collected, and then, 12 ciprofloxacin-resistant isolates were selected for molecular analysis.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
September 2025
Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, Vienna, Austria.. Electronic address:
Using the stable synthetic analogue 3-aza-dehydroxylysyl-phosphatidylglycerol (3adLPG), the putative role of native staphylococcal LPG in inhibiting the antibiotic daptomycin from binding to its target phosphatidylglycerol (PG), was investigated with respect to interfacial interactions between these lipids, daptomycin, and calcium ions. The influence of lipid monolayer/bilayer composition and interfacial ion concentrations upon the structure and integrity of model membranes were probed after daptomycin challenge using a combination of surface x-ray scattering techniques and fluorescence assays. In models representing the membrane composition of the daptomycin susceptible phenotype consisting of PG/3adLPG in a 7:3 M ratio, calcium ions drive the formation of two separate phases; Ca cross-linked PG/PG pairs and PG/3adLPG ion pairs.
View Article and Find Full Text PDFInt J Antimicrob Agents
September 2025
Unity Health Toronto, St. Joseph's Health Centre, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Unity Health Toronto, Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada. Electronic address: Gregory.German@unityhe
Chronic urinary tract infections are persistent bacterial infections with the potential to drive antibiotic resistance. Like other persistent bacterial infections, intracellular bacterial reservoirs and biofilm formation hinder the clearance of pathogens despite long courses of antibiotic therapy. New strategies for treatment of these persistent infections are needed.
View Article and Find Full Text PDFInt J Antimicrob Agents
September 2025
Department of Pediatric Respiratory, Children's Medical Center, The First Hospital of Jilin University, Changchun, 130021, China. Electronic address:
The global proliferation of antibiotic-resistant Staphylococcus aureus, particularly methicillin-resistant Staphylococcus aureus (MRSA), highlights the urgent need for innovative antivirulence strategies. The redundancy and multiplicity of virulence factors produced by S. aureus necessitate interventions capable of concurrently targeting multiple virulence mechanisms.
View Article and Find Full Text PDFVaccine
September 2025
Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
Oral vaccination offers a promising strategy for controlling Helicobacter pylori infection, particularly in the face of rising antibiotic resistance and reinfection rates. In this study, we developed a chitosan nanoparticle-mediated oral DNA vaccine encoding the urease B subunit of H. pylori.
View Article and Find Full Text PDF