98%
921
2 minutes
20
As the Internet of Things and artificial intelligence technologies have advanced, wearable technology has attracted significant attention from academia and industry. Hydrogel has already received much attention as an emerging candidate material for wearable devices due to its unique 3D network structure, excellent biocompatibility, and soft stretchability. It is aimed here to provide a comprehensive overview of the development of hydrogels for wearable applications. Here, the synthetic methods currently employed in wearable hydrogels are reviewed first, including physical crosslinking, chemical crosslinking, and multiple crosslinking. Then, strategies for optimizing the performance of wearable hydrogels are summarized from the perspectives of mechanical properties, electrical properties, thermal properties, and other characteristics such as biocompatibility, self-healing, and self-adhesion. The final section discusses the latest advances in the application of wearable hydrogels in personal protection, and the current shortcomings and challenges. Here, it is aimed to provide innovative insights for further development in this field by summarizing the current research hotspots and cutting-edge issues in wearable hydrogels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.202400960 | DOI Listing |
Int J Biol Macromol
September 2025
College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China. Electronic address:
Conductive hydrogels have emerged as promising materials for flexible wearable electronics; however, their facile fabrication remains challenging. This study presents an antifreeze, antibacterial, and conductive hydrogel constructed from biomacromolecules sodium carboxymethylcellulose (CMCNa) and polyvinyl alcohol (PVA). The hydrogel was synthesized via a simple one-pot method in an ethylene glycol/water (EG/H₂O) binary solvent system, incorporating lithium chloride (LiCl) and clove essential oil (CEO), followed by a single freeze-thaw cycle.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, China.
Conductive hydrogels have revolutionized wearable electronics due to their biocompatibility and tunable properties. However, it remains a great challenge for hydrogel-based sensors to maintain both conductivity and mechanical integrity in harsh environments. Synergistic dynamic interactions provide a promising strategy to address this issue.
View Article and Find Full Text PDFACS Appl Bio Mater
September 2025
Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P.R. China.
Wearable biosensors represent a significant advancement in preventive health monitoring by enabling early disease detection through real-time bioanalysis. This review examines the evolution of point-of-care testing (POCT), with a focus on materials, fabrication techniques, and real-world applications. These biosensors utilize advanced materials, such as supramolecular hydrogels, and innovative manufacturing methods, providing high sensitivity, specificity, and portability.
View Article and Find Full Text PDFBiosens Bioelectron
September 2025
School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China. Electronic address:
The development of flexible gas sensors is of growing interest in wearable electronics. However, developing a gas sensor with low operating temperature, high sensitivity, and rapid response remains a huge challenge. Herein, we first develop a polyacrylamide-sodium acrylate-sodium citrate (PAM-Na-SC) hydrogel electrolyte, and design a hydrogel-based nitrogen dioxide (NO) gas sensor enabled by zinc-air batteries (ZABs).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China.
Hydrogels hold great promises in intelligent wearable gesture-to-recognition translation devices, but high mechanical robustness usually encounters low sensitivity and poor cycling stability, it is pivotal and challenging to balance energy dissipation and conductivity. Herein, the soft-hard multiphase hydrogels have been proposed for the first time through noncovalently threading polymerizable deep eutectic solvent (PDES) into hydrogen-bonded organic frameworks (HOFs). Fluorine groups on HOF (HOF-F) are presented as the hydrogen bond acceptors to form multiple noncovalent interactions between HOF-F and PDES, which expedites the energy dissipation with synchronous increment of ion transport in hydrogels.
View Article and Find Full Text PDF