Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The interfacial electron interactions in heterogeneous catalysts are critical in determining the adsorption strengths and configurations of reaction intermediates, which are essential for the efficiency of multistep tandem catalytic processes. Amorphous-crystalline (a-c) heterostructures have garnered significant interest due to their unusual atomic arrangements, adaptable electron configurations, and exceptional stability. Here, we introduce a mesoporous a-c heterojunction catalyst featuring enriched amorphous-crystalline Ni(OH)/Pt boundaries (ac-Ni(OH)@m-Pt), designed for efficient acidic oxygen reduction reaction (ORR). This catalyst enables electron redistribution at the heterogeneous interface, thereby enhancing both catalytic activity and durability. As anticipated, the ac-Ni(OH)@m-Pt delivers a high mass activity (MA) of 0.95 A mg and maintains good durability (89.8% MA retention) over 15000 cycles. Advanced characterization and theoretical calculations reveal that the catalyst's high performance stems from the dynamic heterogeneous-interface electron redistribution at the a-c interface. This dynamic-cycling electron transfer, driven by the applied potential, promotes O activation and accelerates the protonation of *O intermediate during ORR. This work offers a promising avenue for improving the design of electrocatalysts using a-c interface engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929921PMC
http://dx.doi.org/10.1038/s41467-025-58193-8DOI Listing

Publication Analysis

Top Keywords

electron redistribution
12
redistribution heterogeneous
8
heterogeneous interface
8
acidic oxygen
8
oxygen reduction
8
reduction reaction
8
a-c interface
8
electron
6
dynamic modulation
4
modulation electron
4

Similar Publications

Photocatalysis holds significant promise for the reduction of CO to valued chemicals under mild conditions. However, its potential is severely limited by weak CO adsorption and slow proton-coupled electron transfer (PCET) rates. In this work, ZnInS-based catalysts with varying hydroxyl contents were synthesized via the solvothermal method.

View Article and Find Full Text PDF

Unusual Core-Ionization Pathways in Hydrated Na: A Theoretical KV Study.

Inorg Chem

September 2025

Laboratoire de Chimie Physique Matière et Rayonnement (LCPMR), CNRS UMR 7614, Sorbonne Université (SU), 4 place Jussieu, Paris 75005, France.

The one-photon KV X-ray photoelectron spectra of Na and its hydrated clusters [Na(HO)] ( = 1-6) are dominated by the unusual 1s → 1s3s transition. KV spectroscopy also reveals a pronounced redistribution of the 1s → 1s3p transition cross sections, directly correlated with hydration number and molecular arrangement. Its intrinsic two-step nature, involving simultaneous core ionization and core excitation, enables detailed investigation of solvation-induced electronic structure changes, including dipole-forbidden excitations, core-valence charge transfer, and subtle 1s → V energy shifts.

View Article and Find Full Text PDF

Charge-State-Dependent Structural Transitions and Aromatic Stabilization in Anionic and Neutral RuSi( = 7-11) Clusters.

Inorg Chem

September 2025

Department of Chemistry and Chemical Engineering, Heze University, Heze, Shandong 274015, China.

Transition metal (TM)-doped silicon clusters represent critical model systems for understanding nanoscale hybridization and stability mechanisms. This study provides a comprehensive analysis of structural evolution, electronic properties, and thermodynamic stability in ruthenium-doped silicon clusters (RuSi̅, = 7-11) through integrated experimental and computational approaches. Anion photoelectron spectroscopy combined with density functional theory (DFT/B3LYP), coupled-cluster theory [CCSD(T)], and bonding analyses (AdNDP, NICS, ACID) reveals charge-state-dependent structural transitions, with full Ru encapsulation emerging at = 10 for anions and = 11 for neutrals.

View Article and Find Full Text PDF

The integration of Mn in NaMnFe(PO)PO (NMFPP) enhances the energy density but compromises the Na mobility and structural stability due to limited electron hopping and pronounced Jahn-Teller effects. To address this, a structurally compatible anionic substitution strategy is implemented by partially replacing PO with bulkier and less electronegative SiO groups. The reinforced cathode exhibits enhanced rate performance, which is attributed to lattice expansion induced by the larger SiO units, thereby facilitating Na diffusion and reducing impedance during charge-discharge processes, as supported by GITT and DRT analyses.

View Article and Find Full Text PDF

Reversible increased basement membrane permeability and calcium ion redistribution facilitate ultrasound-enhanced transdermal drug delivery efficiency.

Int J Pharm

September 2025

Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, People's Republic of China; Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, People's Republic of China. Electronic address:

Background: Ultrasound-assisted transdermal drug delivery, or sonophoresis, enhances skin permeability, offering a non-invasive alternative for drug administration. However, its clinical application remains limited because of an insufficient understanding of its underlying mechanisms and optimal parameters. This study investigates the factors influencing ultrasound-enhanced drug absorption and examines its biological effects on skin structures and HaCaT cells, providing a comprehensive analysis of its mechanisms.

View Article and Find Full Text PDF