Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hydrogen production via water electrolysis is essential for achieving carbon-free energy. However, enhancing the performance of these systems, particularly at the electrode level, remains challenging. Photonic sintering (PS) is proposed as a highly effective post-treatment method for electrodes, highlighting the importance of electrode design and optimization. PS significantly enhances the catalytic activity and durability of spinel-type copper-cobalt oxide-based anodes for the oxygen evolution reaction and Pt@C-based cathodes for the hydrogen evolution reaction, which are attributed to structural and chemical modifications, including active site control, optimized surface chemical bonding, improved catalyst-substrate adhesion, and generation of a reduced surface. PS-treated electrodes maintain well-preserved electrochemical active sites and pore structures, which are crucial for activation polarization and mass transport kinetics. Consequently, an anion exchange membrane water electrolysis cell with PS-treated electrodes achieved 89.57% cell efficiency, 3.91 W cm area-specific power at 1.8 V, and a low degradation rate of 0.049 mV h (at 0.5 A cm) and 0.136 mV h (at 1.0 A cm) over 500 h. This research overcomes the traditional trade-off between activity and durability, indicating that PS can be widely applied across various energy fields, including electrochemical storage and conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.5c03082DOI Listing

Publication Analysis

Top Keywords

activity durability
12
water electrolysis
12
photonic sintering
8
anion exchange
8
exchange membrane
8
membrane water
8
evolution reaction
8
ps-treated electrodes
8
sintering electrode
4
electrode structuring
4

Similar Publications

Chronic low back pain (CLBP) is an urgent global health priority given its high prevalence and impact as the leading cause of disability. While several efficacious treatments exist, most have modest effects. Improving outcomes requires a better understanding of treatment mechanisms to enable optimisation.

View Article and Find Full Text PDF

Ni-Fe (oxy)hydroxides are among the most active oxygen evolution reaction (OER) catalysts in alkaline media. However, achieving precise control over local asymmetric Fe-O-Ni active sites in Ni-Fe oxyhydroxides for key oxygenated intermediates' adsorption steric configuration regulation of the OER is still challenging. Herein, we report a two-step dealloying strategy to fabricate asymmetric Fe-O-Ni pair sites in the shell of NiOOH@FeOOH/NiOOH heterostructures from NiFe Prussian blue analogue (PBA) nanocubes, involving anion exchange and structure reconstruction.

View Article and Find Full Text PDF

Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.

View Article and Find Full Text PDF

Replication of HIV-1 requires the coordinated action of host and viral transcription factors, most critically the viral transactivator Tat and the host nuclear factor κB (NF-κB). This activity is disrupted in infected cells that are cultured with extracellular vesicles (EVs) present in human semen, suggesting that they contain factors that could inform the development of new therapeutics. Here, we explored the contents of semen-derived EVs (SEVs) from uninfected donors and individuals with HIV-1 and identified host proteins that interacted with HIV Tat and the NF-κB subunit p65.

View Article and Find Full Text PDF

Hexagonal prism-shaped CuO/SnO heterostructure for high-performance COER to formate.

Chem Commun (Camb)

September 2025

School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.

A hexagonal prism-shaped CuO/SnO heterostructured catalyst with electron-enriched SnO active sites was designed and synthesized. The formation of the CuO/SnO heterointerface and electron-enriched SnO active sites significantly enhanced the catalytic activity and selectivity for HCOO in electrochemical reduction of carbon dioxide (COER), while the well-defined hexagonal prismatic architecture provided catalytic and morphological stability. Consequently, the catalyst delivered a surpassing that of pure SnO by 5 mA cm at -1.

View Article and Find Full Text PDF