98%
921
2 minutes
20
Pyroelectrodynamic therapy (PEDT) integrates photothermal ablation and catalytic generation of reactive oxygen species (ROS), yet tumor-specific PEDT remains unexplored. Herein, pyroelectric tetragonal BaTiO (tBT) nanoparticles (NPs) were capped with polyaniline (PANI) via a Pickering emulsion-masking method, followed by in situ deposition of MnO nanodots on PANI caps to synthesize Janus tBT@PANI-MnO NPs. PANI emeraldine salts (PANI-ES) at pH 6.5 display strong near-infrared II (NIR-II) absorption and 4.67-fold higher photothermal conversion efficiency than that of PANI emeraldine base at pH 7.4. MnO nanodots exhibit self-propagating glucose oxidase (GOx), peroxidase (POD), and catalase (CAT) catalytic activities, remodeling the tumor microenvironment and enhancing PTT and PEDT efficacy. Heterojunction formation with PANI-ES generates 1.63-fold higher pyroelectric potentials compared to pristine tBT NPs. The pyroelectric field selectively alters tumor cell membrane potential and, along with the self-propelled motion by asymmetrical thermophoresis from the Janus structure, promotes cellular uptake of NPs. Tumor accumulation of NPs increases 3.2 folds with broad intratumoral distributions of NPs and ROS. Synergistic toxicities to tumor cells arise from PANI-mediated photothermal effect, ROS generation from tBT-PANI heterojunctions, and MnO nanozymes-catalyzed glucose depletion. Integration of PEDT, mild PTT and MnO-catalyzed starvation therapy completely inhibits tumor growth, extends animal survival, elevated intratumoral O levels, and suppressed adenosine triphosphate productions. Thus, this Janus NP design represents the first attempt to develop pH-responsive heterojunctions and enables tumor-specific PTT, PEDT and nanozyme-catalyzed starvation therapy. STATEMENT OF SIGNIFICANCE: Although phototherapy achieves light localization for tumor suppression, inevitable toxicities usually occur when light penetrates healthy tissues with accumulation of photoactive agents. Extensive efforts have been dedicated to exploring tumor microenvironment-responsive drug delivery systems, aiming to enhance tumor-targeting efficiency and treatment selectivity of anticancer agents. However, to date, no efforts have been made to develop a method that can achieve tumor-specific temperature elevation and pyroelectrodynamic therapy while simultaneously minimizing exposure to normal tissues. To address these challenges, a concise strategy is proposed to generate pyroelectric heterojunctions in response to the slightly acidic tumor microenvironment, taking advantages of reversible protonation and deprotonation properties of polyaniline. The tumor-specific conversion into polyaniline emeraldine salts triggers strong NIR-II absorptions and pyroelectric effect, and the self-propagated catalytic reactions of MnO nanozymes reinforce photothermal, pyroelectrodynamic and starvation therapies of tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2025.03.031 | DOI Listing |
Int J Nanomedicine
September 2025
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
Purpose: This study aimed to develop a composite nanozyme system (Au/PB-Ce6-HA) based on gold nanoparticles (AuNPs) and Prussian blue nanoparticles (PBNPs) to combat tumor hypoxia and insufficient endogenous hydrogen peroxide (HO) deficiency, thus enhancing the efficacy of sonodynamic therapy (SDT) and starvation therapy for liver cancer.
Methods: The Au/PB-Ce6-HA system was constructed by in situ embedding AuNPs on PBNPs, loading the sonosensitizer Chlorin e6 (Ce6), and surface-coating with thiolated hyaluronic acid (HA-SH). The system was evaluated both in vitro and in vivo to assess its ability to catalyze glucose to generate HO, decompose HO to produce oxygen, and generate highly toxic reactive oxygen species (ROS) under ultrasound irradiation.
ACS Appl Mater Interfaces
September 2025
Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
Abnormal glycolysis and glutamine metabolism not only sustain tumor growth but also reprogram the tumor microenvironment (TME). However, due to compensatory mechanisms and low tumor immunogenicity, targeting a single metabolic pathway is often insufficient for effective cancer therapy. We here developed dual-starvation therapeutic metal-phenolic nanocapsules (CG@Cap) by encapsulating a glutamine metabolism inhibitor with a zeolitic imidazolate framework-8 and adsorbing glucose oxidase on the surface, followed by coordination-driven assembly with tannic acid and copper ions.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
August 2025
Department of Pharmacology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan. Electronic address:
In Vivo
August 2025
Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C.
Background/aim: Tacrolimus (TAC), a cornerstone immunosuppressant in solid organ transplantation, is associated with significant cardiovascular toxicities, including endothelial dysfunction and inflammation. Silymarin (SM), a natural flavonoid complex from milk thistle, possesses known antioxidant and anti-inflammatory properties. This study investigated the pro-inflammatory effects of TAC on human umbilical vein endothelial cells (HUVECs) and evaluated the potential protective capacity of SM.
View Article and Find Full Text PDFCells
August 2025
Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
Autophagy is a crucial cellular process responsible for sustaining homeostasis through the degradation and recycling of proteins and organelles, providing energy during amino acid starvation and hypoxia. In cancer, autophagy can either inhibit tumor growth or support cancer cell survival. Our previous studies have shown that re-expression of the tumor suppressor gene inhibits growth of ovarian cancer cells, promotes autophagic cell death in vitro, and induces tumor dormancy in vivo.
View Article and Find Full Text PDF