Publications by authors named "Zhanlin Zhang"

Pyroelectrodynamic therapy (PEDT) of tumors faces challenges due to its low electrocatalytic efficiency at mild temperature and the potential for off-target toxicity to healthy tissue. To overcome these issues, we have engineered pyroelectric nanoparticles (NPs) that feature a pH-triggered heterojunction structure and tumor-selective reactive oxidative species (ROS) production, faclitating synergistic PEDT and mild photothermal therapy (PTT). Herein, molybdenum trioxide (MoO) was deposited in-situ on the surface of tetragonal BaTiO (tBT) to create tBT@MO.

View Article and Find Full Text PDF

Objective: To analyze the characteristics of injuries sustained by casualties of the Jishishan earthquake in Jishishan County, Linxia Hui Autonomous Prefecture, Gansu Province, China.

Methods: A descriptive research approach was employed. Data were retrospectively collected and analyzed for earthquake-related injuries among patients admitted to the People's Hospital of Linxia Hui Autonomous Prefecture, the People's Hospital of Jishishan County, and the Traditional Chinese Medicine Hospital of Linxia Hui Autonomous Prefecture.

View Article and Find Full Text PDF

Piezoelectrodynamic therapy (PEDT) is compromised by hypoxia dilemma of tumors, while starvation therapy is constrained by insufficient enzyme activities. To address these challenges, Janus piezoelectric nanoparticles (NPs) are proposed to spatially immobilize glucose oxidase (GOx) and catalase (CAT), enabling piezoelectric potential-amplified enzyme activities and synergistic PEDT-starvation tumor therapy. Here hollow barium titanate (hBT) NPs are synthesized using SiO templates, followed by partial Au deposition via the Pickering emulsion-masking method to create Janus hBT@Au NPs, which are then conjugated with GOx and CAT on opposing sides to yield C-hBT@Au-G NPs.

View Article and Find Full Text PDF

Rheumatoid Arthritis (RA) is a chronic inflammatory disease characterized by joint inflammation, progressive cartilage degradation, and bone erosion. Recent research has implicated ferroptosis not only in autoimmune hepatitis but also in the pathogenesis and progression of autoimmune disorders like RA. Consequently, numerous therapeutic strategies have begun to target the ferroptosis pathway, particularly in the design and development of nanodrug delivery systems (NDDSs).

View Article and Find Full Text PDF

Pyroelectrodynamic therapy (PEDT) integrates photothermal ablation and catalytic generation of reactive oxygen species (ROS), yet tumor-specific PEDT remains unexplored. Herein, pyroelectric tetragonal BaTiO (tBT) nanoparticles (NPs) were capped with polyaniline (PANI) via a Pickering emulsion-masking method, followed by in situ deposition of MnO nanodots on PANI caps to synthesize Janus tBT@PANI-MnO NPs. PANI emeraldine salts (PANI-ES) at pH 6.

View Article and Find Full Text PDF

Sonodynamic therapy indicates advantages in combating antibiotics-resistant bacteria and deep tissue infections, but challenges remain in the less efficient charge transfer and reactive oxygen species (ROS) generation of sonosensitizers. Herein, an effective bactericidal strategy is developed through enhancing the interfacial electric field (IEF) of S-scheme heterojunctions by an ultrasonication-triggered piezoelectric effect. Hollow barium titanate (hBT) nanoparticles (NPs) were prepared through template etching, followed by in situ assembly of tetrakis (4-carboxyphenyl)porphyrin (TCPP) with Zn to obtain hBT@ZnTCPP.

View Article and Find Full Text PDF

Ferroptosis and sonodynamic therapy (SDT) are both promising therapeutic modalities, but their clinical application remains challenging due to the hypoxic tumor microenvironment and limited supply of polyunsaturated fatty acids. Developing an agent with oxygen-enhanced SDT and increased ferroptosis sensitivity is crucial for advancing tumor therapy. In this study, catalase (Cat) and Acyl-CoA synthetase long-chain family member 4 (ACSL4) highly expressed 4T1 cells were constructed lentivirus transfection.

View Article and Find Full Text PDF

Background: The role of physical activity in diabetes is critical, influencing this disease's development, man-agement, and overall outcomes. In China, 22.3% of adults do not meet the minimum level of physical activity recommended by the World Health Organization.

View Article and Find Full Text PDF

Objective: To investigate the virulence genes and antimicrobial resistance of Bacillus cereus from the pre-packaged pastries in Taizhou city.

Methods: 500 pre-packaged patries were collected in taizhou city market. 97 Bacillus cereus strains were detected from them by GB 4789.

View Article and Find Full Text PDF

Cancer phototherapy indicates advantages in ease of manipulation, negligible drug resistance, and spatiotemporal control but is confronted with challenges in tumor cell accessibility and intermittent light excitation. Herein, we propose a strategy with persistent luminescence (PL)-excited photothermal therapy (PTT), concurrent thermophoresis-propelled motion, and PL-triggered NO release, where PL emission is chargeable by ultrasonication for readily applicable to deep tumors. Mechanoluminescent (ML) nanodots of SrAlO:Eu (SAOE) and PL nanodots of ZnGaO:Cr (ZGC) were deposited on mesoporous silicates to obtain mSZ nanoparticles (NPs), followed by partially coating with polydopamine (PDA) caps and loading NO donors to prepare Janus mSZ@PDA-NO NPs.

View Article and Find Full Text PDF

Pickering emulsions indicate stronger resistance against droplet coalescence than the surfactant-stabilized emulsions. To resemble the surfactant amphiphilicity, Janus fiber fragments (JFs) were herein prepared through side-by-side electrospinning of poly(styrene-maleic anhydride) (PSMA) derivatives and cryosection of the aligned fibers, followed by conjugation of hydrophobic cetylamine (C) and hydrophilic poly(-isopropylacrylamide) (PNIPAm) ligands on the separate sides. Orthogonal analysis table L(5) was designed to examine the effect of process parameters on the emulsification efficiency and stability index of Pickering emulsions.

View Article and Find Full Text PDF

The tumor diffusion and cell internalization are the major obstacles to improving delivery efficacy of therapeutic agents. External electric fields have shown strong effect on the cell membrane polarization and fluidity, but usually need complicated power management circuits. Herein, in situ generation of microelectric field on nanoparticles (NPs) is proposed to overcome these delivery barriers.

View Article and Find Full Text PDF

Cancer phototherapy experiences limitations in tissue diffusion and cell internalization of phototherapeutic agents and dose-dependent side effects. Herein, Janus pyroelectric nanoparticles (NPs) are designed to generate self-powered motion and built-in electric fields to overcome the delivery barriers. Polydopamine (PDA) layers are partially coated on tetragonal BaTiO (tBT) NPs to prepare Janus tBT@PDA, and Au NPs are deposited on the PDA caps to obtain Janus tBT@PDA-Au NPs.

View Article and Find Full Text PDF

The management of wound infection remains the major challenges in real-time diagnosis, effective bacterial elimination and rapid wound healing. Herein, we developed injectable theranostic hydrogels to achieve long-term visual imaging of infected wounds and possible infection recurrence and to launch an on-demand bactericidal effect without using any antibiotics. Antimicrobial peptide ε-polylysine (ePL)-derived hydrogels were prepared through the copolymerization of methacrylated ePL (mPL) and the conjugates with tetrakis(4-carboxyphenyl) porphyrin (mPL-TCPP) and phenol red (mPL-Pr).

View Article and Find Full Text PDF

Antithrombotic therapy is confronted with short half-lives of thrombolytic agents and high bleeding risks. Challenges remain in the development of drug delivery systems for thorough destruction of thrombi and timely restoration of blood flow while minimizing side effects. Herein, polydopamine capsule-like micromotors with urokinase (uPA) loadings and Arg-Gly-Asp (RGD) grafts (r-u@PCM) were constructed using rod-shaped bacteria as the template, and one single opening was created on each capsule through bacterial ghost (BG) formation.

View Article and Find Full Text PDF

() is recognized as a pathogenic factor related to gastrointestinal diseases and gastric cancer. The theranostics of infection is confronted with challenges from colonization on the epithelial cell layer and formation of bacterial biofilms, which prevent interactions with imaging probes and antimicrobial agents. Herein, theranostic nanoparticles (NPs) are developed with ultrasonication (US)-propelled motion and US-excited persistent luminescence for precise imaging and efficient eradication of .

View Article and Find Full Text PDF

Biofilm infection is regarded as a major contributing factor to the failure of burn treatment and a persistent inflammatory state delays healing and leads to the formation of chronic wounds. Herein, self-propelled nanomotors (NMs) are proposed to enhance biofilm infiltration, bacterial destruction, and endotoxin clearance to accelerate the healing of infected burn wounds. Janus nanoparticles (NPs) were prepared through partially coating FeO NPs with polydopamine (PDA) layers, and then polymyxin B (PMB) and thiolated nitric oxide (SNO) donors were separately grafted onto the Janus NPs to obtain IO@PMB-SNO NMs.

View Article and Find Full Text PDF

External light irradiation is usually required in bacterial infection theranostics; however, it is always accompanied by limited light penetration, imaging interference, and incomplete bacterial destruction. Herein, a feasible "image-launching therapy" strategy is developed to integrate real-time optical imaging and simultaneous photodynamic therapy (PDT) of bacterial infections into persistent luminescence (PL) nanoparticles (NPs). Mesoporous silica NPs are used as a substrate for in situ deposition of PL nanodots of ZnGa O :Cr to obtain mPL NPs, followed by surface grafting with silicon phthalocyanine (Si-Pc) and electrostatic assembly of cyanine 7 (Cy7) to fabricate mPL@Pc-Cy NPs.

View Article and Find Full Text PDF

Effective thrombolysis is critical to rapidly rebuild blood flow for thrombosis patients. Drug delivery systems have been developed to address inadequate pharmacokinetics of thrombolytic agents, but challenges still remain in the timely removal of blood clots regarding the dense fibrin networks. Herein, rod-shaped tubular micromotors were developed to achieve efficient penetration and thorough destruction of thrombi.

View Article and Find Full Text PDF

Cancer chemotherapy is confronted with challenges regarding the effective delivery of chemotherapeutics into tumor cells after systemic administration. Herein, we propose a strategy to load drugs into probiotic E. coli Nissle 1917 (EcN) for self-guided navigation to tumor tissues and subsequently release the drugs with in situ transformation into bacterial ghosts (BGs).

View Article and Find Full Text PDF

Cancer chemotherapy remains challenging to pass through various biological and pathological barriers such as blood circulation, tumor infiltration and cellular uptake before the intracellular release of antineoplastic agents. Herein, icebreaker-inspired Janus nanomotors (JMs) are developed to address these transportation barriers. Janus nanorods (JRs) are constructed via seed-defined growth of mesoporous silica nanoparticles on doxorubicin (DOX)-loaded hydroxyapatite (HAp) nanorods.

View Article and Find Full Text PDF

Geometry and mechanical property have emerged as important parameters in designing nanocarriers, in addition to their size, surface charge, and hydrophilicity. However, inconsistent and even contradictory demands regarding the shape and stiffness of nanoparticles have been noted in blood circulation, tumor accumulation, and tumor cell internalization. Herein, CaCO nanorods (NRs) with an aspect ratio of around 2.

View Article and Find Full Text PDF

Cell adhesion-mediated piezoelectric stimulation provides a noninvasive method for in situ electrical regulation of cell behavior, offering new opportunities for the design of smart materials for tissue engineering and bioelectronic medicines. In particular, the surface potential is mainly dominated by the inherent piezoelectricity of the biomaterial and the dynamic adhesion state of cells. The development of an efficient and optimized material interface would have important implications in cell regulation.

View Article and Find Full Text PDF

Sepsis-induced myocardial dysfunction (SIMD) contributes significantly to cardiovascular dysfunction during septic shock. We aimed to evaluate the potential role of Xinmailong injection (XMLI), a polypeptide medicine extracted from Periplaneta americana, in reversing the progression of myocardial damage to SIMD in sepsis patients. This was a multicenter, randomized, double-blind, parallel-group trial.

View Article and Find Full Text PDF

The shapes of drug carriers have significant effects on the drug's blood circulation lifetime and tumor accumulation levels. In this study, nonspherical drug carriers of fiber rods are enhanced with hierarchically targeting capabilities to achieve long circulation in blood, on-demand recovery of cell targeting ligands in tumor tissues and dual ligands-mediated cellular uptake. Zwitterionic polymers are conjugated on fiber rods via acid-labile linkers as stealth coronas to reduce the capture by macrophages and shield the targeting ligands.

View Article and Find Full Text PDF