Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Abnormal glycolysis and glutamine metabolism not only sustain tumor growth but also reprogram the tumor microenvironment (TME). However, due to compensatory mechanisms and low tumor immunogenicity, targeting a single metabolic pathway is often insufficient for effective cancer therapy. We here developed dual-starvation therapeutic metal-phenolic nanocapsules (CG@Cap) by encapsulating a glutamine metabolism inhibitor with a zeolitic imidazolate framework-8 and adsorbing glucose oxidase on the surface, followed by coordination-driven assembly with tannic acid and copper ions. After preferential accumulation at tumor sites and internalization by tumor cells, the nanocapsules release their cargo, simultaneously suppressing glycolysis and glutamine metabolism. This dual inhibition disrupts tumor energy supply and remodels the immunosuppressive TME. Furthermore, the resulting redox imbalance enhances copper-induced cuproptosis, eliciting a strong antitumor immune response. In tumor-bearing mice, CG@Cap demonstrated potent therapeutic efficacy, highlighting the promise of integrating immunometabolic reprogramming with cuproptosis induction for cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5c10711DOI Listing

Publication Analysis

Top Keywords

cancer therapy
12
glutamine metabolism
12
metal-phenolic nanocapsules
8
immunometabolic reprogramming
8
glycolysis glutamine
8
tumor
6
metabolic inhibitor
4
inhibitor loaded
4
loaded metal-phenolic
4
nanocapsules enable
4

Similar Publications

Background: With the availability of more advanced and effective treatments, life expectancy has improved among patients with metastatic breast cancer (MBC), but this makes communication with their medical oncologist more complex. Some patients struggle to learn about their therapeutic options and to understand and articulate their preferences. Mobile health (mHealth) apps can enhance patient-provider communication, playing a crucial role in the diagnosis, treatment, quality of life, and outcomes for patients living with MBC.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) risk models routinely adjust for endoscopic screening because of a) possible confounding with other risk factors and b) possible alteration of natural history of the disease due to adenoma detection and removal.

Methods: In this study, we defined a subject as screen-covered (SC) if a colonoscopy was performed in the past 10 years, and not screen-covered (NSC) otherwise. We created CRC risk models separately for SC and NSC subjects (HRSC, HRNSC) and then obtained a screening-coverage adjusted HR estimate (HRfull) based on a weighted average of ln(HRSC) and ln(HRNSC) with weight equal to the proportion of SC person-time in the NHS population.

View Article and Find Full Text PDF

Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.

View Article and Find Full Text PDF

Metastatic involvement (MB) of the breast from extramammary malignancies is rare, with an incidence of 0.09-1.3% of all breast malignancies.

View Article and Find Full Text PDF

Background: Standard treatment for glioblastoma includes chemotherapy, alkylating agents such as temozolomide (TMZ); however, MGMT resistance leads to recurrence. Demethoxycurcumin (DMC) has been reported to inhibit cancer cell growth, induce apoptosis, and prevent metastasis in different cancer models. We investigated the DMC-induced apoptosis and autophagy via inhibition of the AKT/mTOR pathway in human glioma U87MG and T98G cell lines.

View Article and Find Full Text PDF