98%
921
2 minutes
20
Lane is critical in the vision navigation system of intelligent vehicles. Naturally, the lane is a traffic sign with high-level semantics, whereas it owns the specific local pattern which needs detailed low-level features to localize accurately. Using different feature levels is of great importance for accurate lane detection, but it is still under-explored. On the other hand, current lane detection methods still struggle to detect complex dense lanes, such as Y-shape or fork-shape. In this work, we present Cross Layer Refinement Network aiming at fully utilizing both high-level and low-level features in lane detection. In particular, it first detects lanes with high-level semantic features and then performs refinement based on low-level features. In this way, we can exploit more contextual information to detect lanes while leveraging local-detailed features to improve localization accuracy. We present Fast-ROIGather to gather global context, which further enhances the representation of lane features. To detect dense lanes accurately, we propose Correlation Discrimination Module (CDM) to discriminate the correlation of dense lanes, enabling nearly cost-free high-quality dense lane prediction. In addition to our novel network design, we introduce LineIoU loss which regresses lanes as a whole unit to improve localization accuracy. Experiments demonstrate our approach significantly outperforms the state-of-the-art lane detection methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2025.3551935 | DOI Listing |
ACS Omega
September 2025
Global Drug Metabolism and Pharmacokinetics, Eisai Co., Ltd.Tokodai 5-1-3, Tsukuba, Ibaraki 300-2635, Japan.
Irsenontrine is a novel phosphodiesterase-9 inhibitor that has been developed for the treatment of cognitive dysfunction. To assess the pharmacokinetics, excretion, and distribution of the drug in humans, comprehensive assays for irsenontrine were developed using liquid chromatography with tandem mass spectrometry (LC-MS/MS) in three human matrices, including plasma, urine, and cerebrospinal fluid (CSF). Irsenontrine was extracted from the matrices by a straightforward protein precipitation method and subsequently separated on a reverse-phase column.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
September 2025
School of Natural Sciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
Accurate quantification and characterization of recombinant adeno-associated virus (rAAV) capsid proteins are critical for evaluating product quality and safety, ensuring batch consistency, and informing process development of their manufacture. The capsid consists of three proteins derived from the same gene, and while the mean capsid stoichiometry is nominally 1:1:10 (VP1:VP2:VP3), capsids with different stoichiometries exist. Recent studies show that variations in the capsid stoichiometry can impact vector infectivity.
View Article and Find Full Text PDFBiomed Phys Eng Express
September 2025
Institute of Electrical Engineering Chinese Academy of Sciences, No.6, Zhongguancun Road, Haidian District, Beijing , China, Beijing, Beijing, 100190, CHINA.
Objective: Transcranial magnetic stimulation (TMS) is a promising neuromodulation therapy for treating diseases such as depression and Alzheimer's disease. However, its efficacy depends on precise magnetic field targeting. Current measurement methods face a trade-off between accuracy and complexity.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Turtle Survival Alliance, 5900 Core Road, Suite 504, North Charleston, SC 29406, USA.
The Florida softshell turtle, , is considered common and found in many different types of freshwater habitats throughout its range. However, despite its prevalence where it occurs, little is understood about the species' life history and population dynamics due to difficulties with capture and long-term marking. Building on a foundational study of the Florida softshell turtle at Wekiwa Springs State Park (WSSP) from 2007 to 2012, we present findings from an extended 16-year mark-recapture study spanning from 2007 to 2023.
View Article and Find Full Text PDFACS Nano
September 2025
College of Physics, Donghua University, Shanghai 201620, China.
Broadband anisotropic photodetectors show great promise for polarization-sensitive imaging and multispectral optoelectronic systems yet face critical challenges in material anisotropy modulation and broadband sensitivity. Weyl semimetals exhibit giant optical anisotropy and tunable heterojunction band alignment, enabling high-performance anisotropic photodetection. Herein, ultrabroadband PDs based on the NbNiTe (niobium nickel telluride), enabled by antenna integration and heterostructure engineering, achieve high sensitivity from visible to Terahertz (THz).
View Article and Find Full Text PDF