98%
921
2 minutes
20
Improving degradation efficiency of activated sludge towards bisphenol A (BPA) is related to water safety. A hydrogel immobilized bacteria@metal-organic-frameworks (im-SQ-2@MOFs) was synthesized previously, which was a composite formed by metal organic frameworks adhering to BPA degrading bacteria. Accordingly, this study added im-SQ-2@MOFs as enhancer to augment the BPA degradation ability of activated sludge. Results indicated that after the addition of im-SQ-2@MOFs, the augmented activated sludge system maintained 90 % BPA degradation rate for 10 mg/L BPA. Meanwhile, the system also presented 80-97 % degradation effect for other phenolic pollutants. Augmentation mechanism was revealed through multi-omics analysis. Firstly, im-SQ-2@MOFs enriched the degradation functional microorganisms in activated sludge, and microbial communication was further prompted. Besides, organic compounds degrading enzymes were upregulated to intensify BPA hydrolysis. Furthermore, electron transfer during BPA degradation was accelerated. Results provide new perspective on the development of bio-augmented materials to improve the efficiency of sewage treatment plants. TAKE HOME MESSAGE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2025.132372 | DOI Listing |
Adv Sci (Weinh)
September 2025
Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW, 2007, Australia.
Microalgae-bacteria symbiosis system is significant for sustainable and low-carbon wastewater treatment, with self-aggregation being key to its stable operation and effective pollutant removal. Cellular motility is the main driving force behind self-aggregation, crucial for symbiosis stability, but the characteristics and patterns involved still remain largely unexplored. Here, cellular movement dynamics into the microalgae-activated sludge model (ASM3) is incorporated, enabling synchronized simulation of metabolic activities and movement behaviors through physical and biochemical interactions in bioreactor systems.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China. Electronic address:
Micropollutants are widespread in wastewater systems and can impact microbial communities and the transfer of antibiotic resistance genes (ARGs). Nevertheless, the specific concentration thresholds for these effects under environmental conditions remain largely unknown. This study evaluated six micropollutants at five environmentally relevant concentrations (0.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Institute of Plant Protection, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Gongzhuling 136100, China. Electronic address:
Long-term large-scale application of acetochlor has led to its accumulation in soil, causing serious environmental pollution. In this study, Klebsiella michiganensis ES15 was isolated from the contaminated reactive sludge of an acetochlor pesticide plant and achieved 79.23 % degradation of acetochlor within 4 d after medium optimization using response surface methodology.
View Article and Find Full Text PDFWater Res
August 2025
Westlake Laboratory of Life Sciences and Biomedicine, Center for Infectious Disease Research, School of Life Sciences, Westlake University, Hangzhou 310024, China; Zhejiang Provincial Key Laboratory of Intelligent Low-Carbon Biosynthesis, Research Center for Industries of the Future, School of Engin
Livestock wastewater is a critical reservoir of antibiotic resistance genes (ARGs) that poses significant public health risks. This study comprehensively evaluated the seasonal dynamics and associated risks of ARGs in a full-scale livestock wastewater treatment plant using an integrated metagenomic and metatranscriptomic approach. The results showed that untreated livestock wastewater harbored high abundance (4.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan.
Odor problems in treated municipal wastewater are a concern, yet the sources and formation dynamics of these compounds within sewerage systems remain unclear. 2,4,6-trichloroanisole (2,4,6-TCA) is a key odorant in the effluents of municipal wastewater treatment plants (WWTPs). This study investigates the formation of 2,4,6-TCA through the conversion of its precursor, 2,4,6-trichlorophenol (2,4,6-TCP).
View Article and Find Full Text PDF