Reapplication of glyphosate mitigate fitness costs for soil bacterial communities.

J Environ Manage

Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address:

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glyphosate (GLP) is a globally ubiquitous herbicide that poses a threat to living organisms due to its widespread presence in soil ecosystems. However, the results of current research regarding the effects of glyphosate on soil microorganisms and its ecological risks are vague and inconsistent. In this study, we investigated the impact of single (low/high-dose) and reapplication (high-dose) of glyphosate applications on soil microbes through indoor incubation experiments using 16S rRNA gene high-throughput sequencing technology. Our findings indicate that in the short term, whether it's single or reapplication glyphosate applications, changes in diversities of soil bacterial community were less than those in community composition. Glyphosate exerts selective pressure on soil microbial communities, resulting in a predominant process of species replacement after glyphosate application, and quantitative analysis revealed a higher turnover rate of microbial communities under glyphosate reapplication. Factors related to nitrogen cycling, especially NH-N and NO-N, were identified as the main drivers responsible for the changes in soil microbial community composition following glyphosate addition. Changes in the functionality of soil microbial communities are observed after glyphosate application, with the adaptability of microbial communities resulting in smaller changes with reapplication addition compared to a single application. Furthermore, We observed that glyphosate application leads to a phenomenon resembling the "fitness cost" found in resistant bacteria. When glyphosate as a single application, it has a significant impact on bacterial communities, leading to decreased community diversity, stability, and function, alongside alterations in community structure, however, the effect can be mitigated by reapplying glyphosate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2025.124773DOI Listing

Publication Analysis

Top Keywords

microbial communities
16
glyphosate
12
soil microbial
12
glyphosate application
12
reapplication glyphosate
8
soil
8
soil bacterial
8
bacterial communities
8
communities glyphosate
8
glyphosate applications
8

Similar Publications

Targeting the gut-liver axis with dietary polyphenols to ameliorate metabolic dysfunction-associated steatotic liver disease: advances in molecular mechanisms.

Crit Rev Food Sci Nutr

September 2025

Hunan Key Laboratory of Deep Processing and Quality Control of Cereals and Oils, State Key Laboratory of Utilization of Woody Oil Resource, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a condition that results from metabolic disorders. In addition to genetic factors, irregular and high-energy diets may also significantly contribute to its pathogenesis. Dietary habits can profoundly alter the composition of gut microbiota and metabolites.

View Article and Find Full Text PDF

The relationship between, and joint selection on, a host and its microbes-the holobiont-can impact evolutionary and ecological outcomes of the host and its microbial community. We develop an agent-based modelling framework for understanding the ecological dynamics of hosts and their microbiomes. Our model incorporates numerous microbial generations per host generation allowing selection on both host and microbes.

View Article and Find Full Text PDF

Effects of Imidacloprid on Afrotropical Aquatic Ecosystems: A South African Microcosm Study.

Integr Environ Assess Manag

September 2025

Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.

Pesticides are widely used to meet the food demands of a growing population, with various types used to control pests depending on the crops grown. Rainfall, overspray, and runoff from agricultural fields can wash these insecticides into water bodies, posing documented environmental risks. Imidacloprid is commonly used in Afrotropical regions such as South Africa, yet limited information is available on its toxicity to aquatic ecosystems within this climate region.

View Article and Find Full Text PDF

In pig production, weaning is a critical period where piglets face several environmental stressors. This transition leads to a significant growth reduction and can result in digestive disorders, including diarrhea. To formulate a feed that meets zinc (Zn) and copper (Cu) requirements during the weaning period while minimizing their release into the environment, it became evident that a more bioavailable micro-mineral supplement is necessary.

View Article and Find Full Text PDF

This study investigates the impact of a defined starter culture on the fermentation of cocoa beans and its influence on the production of volatile and non-volatile compounds related to sensory quality. A microbial consortium comprising Saccharomyces cerevisiae, Pichia kudriavzevii, Levilactobacillus brevis, and Acetobacter okinawensis was selected based on their enzymatic activity and acid regulation properties. Fermentation trials showed that the starter culture enhanced the synthesis of key volatile compounds, particularly esters and higher alcohols, such as 2-phenylethanol and 2-phenylethyl acetate, which contribute floral and fruity aromas.

View Article and Find Full Text PDF