98%
921
2 minutes
20
The relationship between, and joint selection on, a host and its microbes-the holobiont-can impact evolutionary and ecological outcomes of the host and its microbial community. We develop an agent-based modelling framework for understanding the ecological dynamics of hosts and their microbiomes. Our model incorporates numerous microbial generations per host generation allowing selection on both host and microbes. We then explore host and microbiome fitness and diversity in response to environmental change. We demonstrate that multiple microbial generations can buffer changes experienced across host lifetimes by smoothing environmental transitions. Our simulations reveal that microbial fitness and host fitness are at odds with each other when considering the impact of vertical inheritance of microbial communities from a host to its offspring-where high parent-offspring microbial transmission favours microbial fitness, while low transmission favours host fitness. These tradeoffs are minimized when microbial generation count per host generation is high. This may arise from 'cross-generational priority effects' which maintain diversity within the community and can subsequently enable selection of beneficial microbes by the host. Our model is extensible into new areas of holobiont research and provides novel insights into holobiont evolution under variable environmental conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsec/fiaf089 | DOI Listing |
PLoS One
September 2025
Sterile Processing Department, Sichuan GEM Flower Hospital, North Sichuan Medical College, Chengdu, China.
Background: Luminal instruments are characterized by their slender internal lumens, which make them particularly challenging to clean and dry. A common drying method used by Sterile Processing Department (SPD) technicians involves blowing high-pressure air into one end of the lumen to expel moisture. However, this process generates a significant amount of aerosols that may contain bacteria, viruses, and other microorganisms.
View Article and Find Full Text PDFAnesthesiology
September 2025
Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida.
Background: The brain-gut-microbiome (BGM) axis is a communication network through which the brain and gastrointestinal microbiota interact via neural, hormonal, immune, and gene expression mechanisms. Gut microbiota dysbiosis is thought to contribute to neurocognitive disorders, including perioperative neurocognitive disorder (PND), and to various metabolic abnormalities. Recently, we reported that sevoflurane induces neurocognitive deficits in exposed rats as well as their future offspring, with male offspring being particularly affected (intergenerational PND).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
High-mobility group box protein 1 (HMGB1) is a chromatin-associated nonhistone protein widely distributed in the nucleus of eukaryotic cells. It is transported extracellularly as a proinflammatory mediator or late warning protein to induce immune and inflammatory reactions upon stimuli such as microbial infection. Here, we have found that HMGB1 directly interacts with bacterial DNA analogue CpG-A in the extracellular environment to undergo liquid-liquid phase separation (LLPS) via its positively charged DNA-binding domain.
View Article and Find Full Text PDFMol Biol Rep
September 2025
College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China.
Background: A secondary Pasteurella multocida (Pm) infection following Mycoplasma ovipneumoniae (Mo) challenge in sheep results in severe respiratory disease. Scavenger receptor A (SRA) is a key phagocytic receptor on macrophages, which facilitates microbial clearance. However, the role of sheep SRA in Mo-associated secondary Pm infection is less understood.
View Article and Find Full Text PDFLasers Med Sci
September 2025
Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Microbial contamination of absorbable collagen membranes used in guided bone regeneration (GBR) may compromise healing outcomes. This study aimed to investigate whether the minimum inhibitory concentration (MIC) of hydrogen peroxide (HO) can improve the antibacterial effect of indocyanine green (ICG)-mediated antimicrobial photodynamic therapy (PDT) on absorbable collagen membranes while reducing the need for high HO concentrations. A laboratory-based model was developed using Streptococcus sanguinis and Staphylococcus aureus.
View Article and Find Full Text PDF