Silk Fibroin-Based Antifreezing and Highly Conductive Hydrogel for Sensing at Ultralow Temperature.

ACS Sens

State Key Laboratory of New Textile Materials and Advanced Processing, College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hydrogels with a combination of mechanical flexibility and good electrical conductivity hold significant potential for various applications. Nonetheless, it is inevitable that water-based conductive hydrogels lose their elasticity and conductivity at extremely low temperatures, severely limiting their utilization in ultralow temperature environments, such as those for Arctic/Antarctic exploration. In this study, we developed a conductive hydrogel based on a double network cross-linking strategy that incorporated silk fibroin (SF) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) within a lithium bromide (LiBr) solution, which shows exceptional antifreezing (-108 °C freezing point) and excellent conductivity (16.33 S m). The obtained SF/PEDOT:PSS/LiBr (SPL) hydrogel shows a stable and reliable response to a wide range of deformations (compression: 0.5-60%; tensile: 1.0-100%), with a short response/recovery time of approximately 70 ms. More importantly, the hydrogel displays well-maintained conductivity, robust mechanical properties, and dependable sensing capabilities, even under temperatures as low as -80 °C. For proof of concept, we demonstrated the applications of the SPL hydrogel in detecting body movements, monitoring climate conditions, and ensuring information security in ultralow temperature environments. The results indicate that the antifreezing hydrogel is a promising candidate for fabricating flexible sensors, particularly well-suited for use in challenging ultralow temperature scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.4c03642DOI Listing

Publication Analysis

Top Keywords

ultralow temperature
16
conductive hydrogel
8
temperature environments
8
spl hydrogel
8
hydrogel
6
silk fibroin-based
4
fibroin-based antifreezing
4
antifreezing highly
4
highly conductive
4
hydrogel sensing
4

Similar Publications

Protonation Enables Durable and Efficient Water Oxidation on Commercial TiO/IrO.

J Phys Chem Lett

September 2025

Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China.

The oxygen evolution reaction (OER) performance of commercial TiO-supported IrO (IrO/TiO) suffers from the high electron transfer barriers at the IrO/TiO interface. Herein, we develop a cathodic polarization strategy to protonate TiO (p-TiO) in a commercial IrO/TiO catalyst. The high-density Ti-OH polaronic states on the surface of protonated TiO greatly contribute to the decrease in the electron transfer barriers at the IrO/TiO interface.

View Article and Find Full Text PDF

Thickness-Dependent Low Lattice Thermal Conductivity of Chemical Vapor-Deposited SnSe Nanosheets.

ACS Nano

September 2025

State Key Lab of New Ceramic Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

SnSe is a layered semiconductor with intrinsically low thermal conductivity, making it a promising candidate for thermoelectric and thermal management applications. However, detailed measurements of the intrinsic thermal conductivity of SnSe nanosheets grown by chemical vapor deposition (CVD) remain scarce. Here, monocrystalline SnSe nanosheets were synthesized by CVD, with systematic investigation of thickness-dependent in-plane thermal conductivity.

View Article and Find Full Text PDF

Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.

View Article and Find Full Text PDF

Study on the high viscosity and gel-prone properties of glycine-amidated pectin and its regulatory role on the freeze-thaw stability of sea bass surimi.

Food Chem

September 2025

The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China; Food Science Research Institute of Zhangzhou, Minnan Normal University, Zhangzhou 363000, China. Electronic address:

An ultra-low temperature (-5 °C) enzymatic method was employed to prepare glycine-amidated pectin (Gly-Pe) and evaluate its physicochemical properties and freeze-thaw protection mechanism in surimi. After glycine grafting (12.77 %), amide bonds disrupted pectin's crystalline structure and enhanced molecular chain flexibility.

View Article and Find Full Text PDF

Homo-layer flexible BiTe-based films with high thermoelectric performance.

Sci Adv

September 2025

Department of Physics, State Key Laboratory of Quantum Functional Materials, and Guangdong Basic Research Center of Excellence for Quantum Science, Southern University of Science and Technology, Shenzhen 518055, China.

Here, we demonstrate unconventional scalable and sustainable manufacturing of flexible n-type BiTe films via physical vapor deposition and homo-layer fusion engineering. The achieved ultrahigh power factor of up to 30.0 microwatts per centimeter per square kelvin and ultralow lattice thermal conductivity of 0.

View Article and Find Full Text PDF