A novel prefrontal cortex and hippocampus combined brain slice based on in vivo diffusion tensor imaging of healthy male rats.

Neurosci Lett

Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, NO.6 Beiertiao, Zhongguancun, Haidian District, Beijing 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, No.380, H

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The pathway between the prefrontal cortex (PFC) and hippocampus (HPC) has been associated with various psychiatric disorders. While hippocampal brain slices are extensively utilized, their use has traditionally been constrained in studying long connectivity between PFC and HPC due to nerve fiber rupture during the slicing process. Consequently, optimizing brain slice preparation is crucial. The experiment consisted of three phases. Initially, the structural connection of the PFC-HPC pathway was examined using diffusion tensor imaging (DTI) data from healthy male rats. Subsequently, combined PFC-HPC brain slices were created through vibratome based on imaging acquisition. Finally, the morphology and electrophysiology of the combined brain slices were analyzed. DTI findings revealed numerous nerve fibers linking the two brain regions in the rat brain. Subsequently, a successful preparation of combined PFC-HPC brain slices cut at a 7 - 8° angle relative to the middle sagittal plane was achieved using a vibratome. Hematoxylin and eosin staining results confirmed that PFC-HPC fibers remained well-preserved in the combined brain slice. Electrophysiological recordings indicated that synchronized neuronal activity occurred in the HPC upon PFC stimulation, which depended on hippocampal activity and the integrity of PFC-to-HPC connectivity. A novel procedure for the successful preparation of healthy combined HPC-PFC brain slices, maintaining a complete fiber bundle connection between PFC and HPC, is proposed. This methodology enhances the understanding of the preservation of PFC-HPC connectivity in specific angled brain slice preparations, thereby facilitating neuroscience research focused on the longrange circuitry of subregions of interest.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2025.138171DOI Listing

Publication Analysis

Top Keywords

brain slices
20
brain slice
16
combined brain
12
brain
11
prefrontal cortex
8
diffusion tensor
8
tensor imaging
8
healthy male
8
male rats
8
pfc hpc
8

Similar Publications

Essential tremor (ET) is a common neurological disease that is characterized by 4-12 Hz kinetic tremors of the upper limbs and high genetic heterogeneity. Although numerous candidate genes and loci have been reported, the etiology of ET remains unclear. A novel ET-related gene was initially identified in a five-generation family via whole-exome sequencing, and other variants were identified in 772 familial ET probands and 640 sporadic individuals via whole-genome sequencing.

View Article and Find Full Text PDF

Human myelinated brain organoids with integrated microglia as a model for myelin repair and remyelinating therapies.

Sci Transl Med

September 2025

Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland.

Oligodendrocytes, the myelinating cells of the central nervous system (CNS), are essential for the formation of myelin sheaths and pivotal for maintaining axonal integrity and conduction. Disruption of these cells and the myelin sheaths they produce is a hallmark of demyelinating conditions like multiple sclerosis or those resulting from certain drug side effects, leading to profound neurological impairments. In this study, we created a human brain organoid comprising neurons, astrocytes, and myelinating oligodendrocytes.

View Article and Find Full Text PDF

Two-Step Semi-Automated Classification of Choroidal Metastases on MRI: Orbit Localization via Bounding Boxes Followed by Binary Classification via Evolutionary Strategies.

AJNR Am J Neuroradiol

September 2025

From the Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America (J.S.S., B.M., S.H., A.H., J.S.), and Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (H.S.).

Background And Purpose: The choroid of the eye is a rare site for metastatic tumor spread, and as small lesions on the periphery of brain MRI studies, these choroidal metastases are often missed. To improve their detection, we aimed to use artificial intelligence to distinguish between brain MRI scans containing normal orbits and choroidal metastases.

Materials And Methods: We present a novel hierarchical deep learning framework for sequential cropping and classification on brain MRI images to detect choroidal metastases.

View Article and Find Full Text PDF

Although glutamatergic and GABAergic synapses are important in seizure generation, the contribution of non-synaptic ionic and electrical mechanisms to synchronization of seizure-prone hippocampal neurons remains unclear. Here, we developed a physiologically relevant model to study these mechanisms by inducing prolonged seizure-like discharges (SLDs) in hippocampal slices from male rats through modest, sustained ionic manipulations. Specifically, we reduced extracellular calcium to 0.

View Article and Find Full Text PDF

Patients with Dravet syndrome (DS) present with severe, spontaneous seizures and ataxia. While most patients with DS have variants in the sodium channel Nav1.1 α subunit gene, SCN1A, variants in the sodium channel β1 subunit gene, SCN1B, are also linked to DS.

View Article and Find Full Text PDF