Two-Step Semi-Automated Classification of Choroidal Metastases on MRI: Orbit Localization via Bounding Boxes Followed by Binary Classification via Evolutionary Strategies.

AJNR Am J Neuroradiol

From the Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America (J.S.S., B.M., S.H., A.H., J.S.), and Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (H.S.).

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Purpose: The choroid of the eye is a rare site for metastatic tumor spread, and as small lesions on the periphery of brain MRI studies, these choroidal metastases are often missed. To improve their detection, we aimed to use artificial intelligence to distinguish between brain MRI scans containing normal orbits and choroidal metastases.

Materials And Methods: We present a novel hierarchical deep learning framework for sequential cropping and classification on brain MRI images to detect choroidal metastases. The key innovation of this approach lies in training an orbit localization network based on a YOLOv5 architecture to focus on the orbits, isolating the structures of interest and eliminating irrelevant background information. The initial sub-task of localization ensures that the input to the subsequent classification network is restricted to the precise anatomical region where choroidal metastases are likely to occur. In Step 1, we trained a localization network on 386 T2-weighted brain MRI axial slices from 97 patients. Using the localized orbit images from Step 1, in Step 2 we trained a binary classifier network with 33 normal and 33 choroidal metastasis-containing brain MRIs. To address the challenges posed by the small dataset, we employed a data-efficient evolutionary strategies approach, which has been shown to avoid both overfitting and underfitting in small training sets.

Results: Our orbit localization model identified globes with 100% accuracy and a mean Average Precision of Intersection over Union thresholds of 0.5 to 0.95 (mAP(0.5:0.95)) of 0.47 on held-out testing data. Similarly, the model generalized well to our Step 2 dataset which included orbits demonstrating pathologies, achieving 100% accuracy and mAP(0.5:0.95) of 0.44. mAP(0.5:0.95) appeared low because the model could not distinguish left and right orbits. Using the cropped orbits as inputs, our evolutionary strategies-trained convolutional neural network achieved a testing set area under the curve (AUC) of 0.93 (95% CI [0.83, 1.03]), with 100% sensitivity and 87% specificity at the optimal Youden's index.

Conclusions: The semi-automated pipeline from brain MRI slices to choroidal metastasis classification demonstrates the utility of a sequential localization and classification approach, and clinical relevance for identifying small, "corner-of-the-image", easily overlooked lesions.

Abbreviations: AI = artificial intelligence; AUC = area under the curve; CNN = convolutional neural network; DNE = deep neuroevolution; IoU = intersection over union; mAP = mean average precision; ROC = receiver operating characteristic.

Download full-text PDF

Source
http://dx.doi.org/10.3174/ajnr.A8998DOI Listing

Publication Analysis

Top Keywords

brain mri
20
choroidal metastases
16
orbit localization
12
evolutionary strategies
8
artificial intelligence
8
localization network
8
step trained
8
100% accuracy
8
average precision
8
intersection union
8

Similar Publications

Neuroimaging Data Informed Mood and Psychosis Diagnosis Using an Ensemble Deep Multimodal Framework.

Hum Brain Mapp

September 2025

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.

Investigating neuroimaging data to identify brain-based markers of mental illnesses has gained significant attention. Nevertheless, these endeavors encounter challenges arising from a reliance on symptoms and self-report assessments in making an initial diagnosis. The absence of biological data to delineate nosological categories hinders the provision of additional neurobiological insights into these disorders.

View Article and Find Full Text PDF

Background: Intensive language-action therapy treats language deficits and depressive symptoms in chronic poststroke aphasia, yet the underlying neural mechanisms remain underexplored. Long-range temporal correlations (LRTCs) in blood oxygenation level-dependent signals indicate persistence in brain activity patterns and may relate to learning and levels of depression. This observational study investigates blood oxygenation level-dependent LRTC changes alongside therapy-induced language and mood improvements in perisylvian and domain-general brain areas.

View Article and Find Full Text PDF

Unlabelled: Leptomeningeal metastasis (LM) is a severe complication of solid malignancies, including lung adenocarcinoma, characterized by poor prognosis and diagnostic challenges. This study assesses whether curvilinear peri-brainstem hyperintense signals on MRI are a characteristic feature of LM in lung adenocarcinoma patients.

Methods: This retrospective study analyzed data from multiple centers, encompassing lung adenocarcinoma patients with peri-brainstem curvilinear hyperintense signals on MRI between January 2016 and March 2022.

View Article and Find Full Text PDF

Parasagittal dural space and arachnoid granulations morphology in pre-clinical and early clinical multiple sclerosis.

Mult Scler

September 2025

Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, VA Medical Center, TN Valley Healthcare System, Nashville, TN, USA.

Background: There is limited knowledge on the post-glymphatic structures such as the parasagittal dural (PSD) space and the arachnoid granulations (AGs) in multiple sclerosis (MS).

Objectives: To evaluate differences in volume and macromolecular content of PSD and AG between people with newly diagnosed MS (pwMS), clinically isolated syndrome (pwCIS), or radiologically isolated syndrome (pwRIS) and healthy controls (HCs) and their associations with clinical and radiological disease measures.

Methods: A total of 69 pwMS, pwCIS, pwRIS, and HCs underwent a 3.

View Article and Find Full Text PDF

Perinatal Arterial Ischemic Stroke in Monochorionic Twins: A Retrospective Observational Single-Center Cohort Study.

Stroke

September 2025

Division of Neonatology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, the Netherlands. (B.O.v.O., M.R., M.S.S., E.L., L.S.d.V., S.J.S.).

Background: Monochorionic twins, characterized by placental sharing and vascular anastomoses, carry a high risk of brain injury, including perinatal arterial ischemic stroke (PAIS). However, the pathophysiology and timing-related risk factors of PAIS remain unclear.

Methods: Retrospective cohort of all monochorionic twins with neuroimaging-confirmed PAIS born from 2005 to 2024 and evaluated at a Dutch national referral center.

View Article and Find Full Text PDF